Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose two teams, A and B, are playing a match to see who is the first to win games (for some particular n). We can suppose that A and B are equally competent, so each has a 50% chance of winning any particular game. Suppose they have already played i+j games, of which A has won i and B has won j. Give an efficient algorithm to compute the probability that A will go on to win the match. For example, if i=n-1 and j=n-3 then the probability that A will win the match is 78, since it must win any of the next three games.

Short Answer

Expert verified

To solve the given problem, use dynamic programming approach.78,i=n-1andj=n-3,i+j

Step by step solution

01

Dynamic programming approach.

In dynamic programming there are all possibilities and more time as compared to greedy programming. and the Dynamic programming approach always gives the accurate or correct answer. In dynamic programming have to compute only distinct function call because as soon as compute and store in one data structure so that after this reuse afterward if it is needed.

02

Defining Recursive Relation and Implementation of Algorithm.

Let us suppose P (i,j ) is the probability for A to win the first n games.

Given that, i = Number of match A has won

And j=Number of match B has won

So, there are two conditions they are,

If P (i,j )=1 where i > 0 and j=1 this mean the probability of A to win is ‘one’.

If P (i,j )=0 where i > 0 and j=1 , this means the probability of A for won is ‘zero’.

Now for rest of the value of 'i' and 'j' then the value of evaluations is,

pi,j=12Pi,j+1+Pi+1

After that let P (0,j ) is as zero or one then compare each situation.

P0,i=1andPi,1=0ifn-j>0andn-i=0Pn-i,j-i=1ifn-j=0andn-i>1

Here, A will go on to win the match. For example, if i=n-1 and j=n-3 then the probability that A will win the match is 78, since it must win any of the next three games.

ifn-i>1andn-j>1Pn-i,j-i=12Pi-1,j+Pi,j-2returnPn-i,j-i

By approach of dynamic programming for playing a match to see who is the first to win number of games where equally competent and each has fifty percent chance of winning any particular game and the probability that A will go for to win the match an A will go on to win the match. ifi=n-1 and j=n-3 then the probability that A will win and it will take time of O(n) Since, we are playing ‘n’ times, so our algorithm will trace output of n output. Thus, runtime would be O(n)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Pebbling a checkerboard. We are given a checkerboard which has 4 rows and ncolumns, and has an integer written in each square. We are also given a set of 2n pebbles, and we want to place some or all of these on the checkerboard (each pebble can be placed on exactly one square) so as to maximize the sum of the integers in the squares that are covered by pebbles. There is one constraint: for a placement of pebbles to be legal, no two of them can be on horizontally or vertically adjacent squares (diagonal adjacency is fine).

  1. Determine the number of legal patterns that can occur in any column (in isolation, ignoring the pebbles in adjacent columns) and describe these patterns.

Call two patterns compatible if they can be placed on adjacent columns to form a legal placement. Let us consider subproblems consisting of the first columns 1kn. Each subproblem can be assigned a type, which is the pattern occurring in the last column.

  1. Using the notions of compatibility and type, give an O(n)-time dynamic programming algorithm for computing an optimal placement.

Optimal binary search trees. Suppose we know the frequency with which keywords occur in programs of a certain language, for instance:

begin5%do40%else8%end4%

if10%then10%while23%

We want to organize them in a binary search tree, so that the keyword in the root is alphabetically bigger than all the keywords in the left subtree and smaller than all the keywords in the right subtree (and this holds for all nodes). Figure 6.12 has a nicely-balanced example on the left. In this case, when a keyword is being looked up, the number of comparisons needed is at most three: for instance, in finding “while”, only the three nodes “end”, “then”, and “while” get examined. But since we know the frequency 196 Algorithms with which keywords are accessed, we can use an even more fine-tuned cost function, the average number of comparisons to look up a word. For the search tree on the left, it is

cost=1(0.04)+2(0.40+0.10)+3(0.05+0.08+0.10+0.23)=2.42

By this measure, the best search tree is the one on the right, which has a cost of Give an efficient algorithm for the following task. Input: n words (in sorted order); frequencies of these words: p1,p2,...,pn.

Output: The binary search tree of lowest cost (defined above as the expected number of comparisons in looking up a word).

Figure 6.12 Two binary search trees for the keywords of a programming language.

Given two strings x=x1x2···xnand y=y1y2···ym, we wish to find the length of their longest common substring, that is, the largest k for which there are indices i and j with xixi+1···xi+k-1=yjyj+1···yj+k-1. Show how to do this in time0(mn)

Given an unlimited supply of coins of denominations, we wish to make change for a value ; that is, we wish to find a set of coins whose total value is . This might not be possible: for instance, if the denominations are and 10 then we can make change for 15 but not for 12. Give an dynamic-programming algorithm for the following problem.Input:,; .Question: Is it possible to make change for using coins of denominations ?

Consider the following variation on the change-making problem (Exercise 6.17): you are given denominations x1,x2,...,xn, and you want to make change for a value v, but you are allowed to use each denomination at most once. For instance, if the denominations are 1,5,10,20,then you can make change for 16=1+15and for 31=1+10+20but not for 40(because you can’t use 20 twice).

Input: Positive integers; x1,x2,...,xnanother integer v.

Output: Can you make change for v, using each denominationxi at most once?Show how to solve this problem in time O(nV).

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free