Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Optimal binary search trees. Suppose we know the frequency with which keywords occur in programs of a certain language, for instance:

begin5%do40%else8%end4%

if10%then10%while23%

We want to organize them in a binary search tree, so that the keyword in the root is alphabetically bigger than all the keywords in the left subtree and smaller than all the keywords in the right subtree (and this holds for all nodes). Figure 6.12 has a nicely-balanced example on the left. In this case, when a keyword is being looked up, the number of comparisons needed is at most three: for instance, in finding “while”, only the three nodes “end”, “then”, and “while” get examined. But since we know the frequency 196 Algorithms with which keywords are accessed, we can use an even more fine-tuned cost function, the average number of comparisons to look up a word. For the search tree on the left, it is

cost=1(0.04)+2(0.40+0.10)+3(0.05+0.08+0.10+0.23)=2.42

By this measure, the best search tree is the one on the right, which has a cost of Give an efficient algorithm for the following task. Input: n words (in sorted order); frequencies of these words: p1,p2,...,pn.

Output: The binary search tree of lowest cost (defined above as the expected number of comparisons in looking up a word).

Figure 6.12 Two binary search trees for the keywords of a programming language.

Short Answer

Expert verified

To obtain minimum cost binary search tree, we need to calculate the cost of each possible binary search tree which can be obtain from main tree. This problem can be easily solve using dynamic programming paradigm because we have subproblem as each subtree at root node will be a problem itself to calculate minimum cost of subtree.

Step by step solution

01

Binary Search Tree (BST) and Dynamic programming approach.

A binary search tree has following properties:

  • The left subtree of a node contains nodes with keys having lesser value
  • The right subtree of a node contains node with keys having greater value.
  • The left and the right subtree must also be a binary search tree.

In dynamic programming there are all possibilities and more time as compared to greedy programming. and the Dynamic programming approach always gives the accurate or correct answer. In dynamic programming have to compute only distinct function call because as soon as compute and store in one data structure so that after this reuse afterward if it is needed.

02

Defining Recurrence Relation

Here we need to define two functions:

  • Wi,j:It is the sum of all probabilities of all the nodes within that tree or subtree.
  • Ei,j:It will pick the ’r’ root node that will create further two subtrees.

Our recurrence relations are:

Ei,j=minEi,r-1+wi,j;for  irjwi,j=Wi,j-1+p

In Ei,j:, Left Subtree is fromitor-1 and Right Subtree is from r+1toj.

Wi,j:will merge these two subtrees: Left Subtree and Right subtree.

03

Algorithm

p1.nis array of words frequencies of n

fors=1tonfori=0ton-sj=i+sifi=j

data-custom-editor="chemistry" Ti,j=pifork=itoj+1Ti,j=Ti,j+pkreturnT0,n-1

It will return minimum cost binary tree.

The runtime of above algorithm will beOn2 as two nested loops are running for n and n-1times which give combined On2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following variation on the change-making problem (Exercise 6.17): you are given denominations x1,x2,...,xn, and you want to make change for a value v, but you are allowed to use each denomination at most once. For instance, if the denominations are 1,5,10,20,then you can make change for 16=1+15and for 31=1+10+20but not for 40(because you can’t use 20 twice).

Input: Positive integers; x1,x2,...,xnanother integer v.

Output: Can you make change for v, using each denominationxi at most once?Show how to solve this problem in time O(nV).

Given an unlimited supply of coins of denominations, we wish to make change for a value ; that is, we wish to find a set of coins whose total value is . This might not be possible: for instance, if the denominations are and 10 then we can make change for 15 but not for 12. Give an dynamic-programming algorithm for the following problem.Input:,; .Question: Is it possible to make change for using coins of denominations ?

You are going on a long trip. You start on the road at mile post 0. Along the way there aren hotels, at mile posts a1<a2<...<an , where eachai is measured from the starting point. The only places you are allowed to stop are at these hotels, but you can choose which of the hotels you stop at. You must stop at the final hotel (at distance an), which is your destination. You’d ideally like to travel miles a day, but this may not be possible (depending on the spacing of the hotels). If you travel x miles during a day, the penalty for that day is (200x)2. You want to plan your trip so as to minimize the total penalty- that is, the sum, over all travel days, of the daily penalties.Give an efficient algorithm that determines the optimal sequence of hotels at which to stop

Pebbling a checkerboard. We are given a checkerboard which has 4 rows and ncolumns, and has an integer written in each square. We are also given a set of 2n pebbles, and we want to place some or all of these on the checkerboard (each pebble can be placed on exactly one square) so as to maximize the sum of the integers in the squares that are covered by pebbles. There is one constraint: for a placement of pebbles to be legal, no two of them can be on horizontally or vertically adjacent squares (diagonal adjacency is fine).

  1. Determine the number of legal patterns that can occur in any column (in isolation, ignoring the pebbles in adjacent columns) and describe these patterns.

Call two patterns compatible if they can be placed on adjacent columns to form a legal placement. Let us consider subproblems consisting of the first columns 1kn. Each subproblem can be assigned a type, which is the pattern occurring in the last column.

  1. Using the notions of compatibility and type, give an O(n)-time dynamic programming algorithm for computing an optimal placement.

Let us define a multiplication operation on three symbols a,b,caccording to the following table; thus ab=b,ba=c, and so on. Notice that the multiplication operation defined by the table is neither associative nor commutative.

Find an efficient algorithm that examines a string of these symbols, say bbbbac, and decides whether or not it is possible to parenthesize the string in such a way that the value of the resulting expression is . For example, on input bbbbacyour algorithm should return yes because((b(bb))(ba))c=a.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free