Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A linear, time-invariant system has the following impulse response:


(a) Describe in words the effect of this system.

(b) What is the corresponding polynomial

Short Answer

Expert verified

Answer is not given by the question.

Step by step solution

01

Step – 1:

a) consequence of the method:

From the urge response,

ẟ(t) =1t0,tt00,t>t0- .....1.

02

 Step – 2:

The response of the system stays constant with both the value of 1t0until it approaches zero t = t0after extending the (t0) duration.

As a result, the effect of the system's original signal is defined.

b)

The following is a general representation of a polynomial equation:

Based on the impulsive reaction,

B(x) = b0 + b1x + ....... +btxt ......2.

Extend Equation (1)'s auto - correlation functional as follows::

Whent=0, b0 = 1t0 .......3.

When t=1, b1 = 1t0 ……4.

When t=2, b2 = 1t0 ......5.

When t= t0, bt0 = 1t0 .......6.

When t= t0+ 1, bt0 = 1t0+1 …… (7)

To find the polynomial, change formula (3), argument (4), equation (5), equation (6), then equation (7) in equation (2).

Bx=1t0+1t0x+1t0x2+.....+1t0xt0=1t01+x+x2+....+xt0(8)

Therefore, the corresponding polynomial is:

B(x) =1t0 (1 + x + x2 + ......+xt0)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In this problem we will develop a divide-and-conquer algorithm for the following geometric task.

CLOSEST PAIRInput: A set of points in the plane, {p1=(x1;y1),p2=(x2,y2),...,pn=(xn,yn)}

Output: The closest pair of points: that is, the pair PiPjfor which the distance between piand pj, that is,

(xi-xi)2+z(yi-yi)2,

is minimized.

For simplicity, assume that n is a power of two, and that all the x-coordinates role="math" localid="1659237354869" xi are distinct, as are the y-coordinates.

Here’s a high-level overview of the algorithm:

.Find a value for which exactly half the points have xi<x, and half have xi>x. On this basis, split the points into two groups, L and R.

• Recursively find the closest pair in L and in R. Say these pairs are pL·qLLand pR·qRRwith distances dLand dR respectively. Let d be the smaller of these two distances.

• It remains to be seen whether there is a point in Land a point in R that are less than distance dapart from each other. To this end, discard all points with xi<x-dor xi>x+d and sort the remaining points by y-coordinate.

• Now, go through this sorted list, and for each point, compute its distance to the seven subsequent points in the list. Let pM·qMbe the closest pair found in this way.

• The answer is one of the three pairs role="math" localid="1659237951608" {pL,qL},{pR,qR}{pM,qM}, whichever is closest.

(a) In order to prove the correctness of this algorithm, start by showing the following property: any square of size d×d in the plane contains at most four points of L.

(b) Now show that the algorithm is correct. The only case which needs careful consideration is when the closest pair is split between L and R.

(c) Write down the pseudocode for the algorithm, and show that its running time is given by the recurrence:

T(n)=2T(nl2)+0(nlogn)

Show that the solution to this recurrence is o(nlogzn).

(d) Can you bring the running time down to O(nlogn)?

In our median-finding algorithm (Section 2.4), a basic primitive is the split operation, which takes as input an array S and a value V and then divides S into three sets: the elements less than V , the elements equal to V , and the elements greater than V . Show how to implement this split operation in place, that is, without allocating new memory.

Professor F. Lake tells his class that it is asymptotically faster to square an -bit integer than to multiply two n-bit integers. Should they believe him?

Thesquare of a matrix A is its product with itself, AA.

(a) Show that five multiplications are sufficient to compute the square of a 2 x 2 matrix.

(b) What is wrong with the following algorithm for computing the square of an n x n matrix?

“Use a divide-and-conquer approach as in Strassen’s algorithm, except that instead of getting 7 subproblems of size n2, we now get 5 subproblems of size n2 thanks to part (a). Using the same analysis as in Strassen’s algorithm, we can conclude that the algorithm runs in time O (nc) .”

(c) In fact, squaring matrices is no easier than matrix multiplication. In this part, you will show that if n x n matrices can be squared in time S(n) = O(nc), then any two n x n matrices can be multiplied in time O(nc) .

  1. Given two n x n matrices A and B, show that the matrix AB + BA can be computed in time 3S(n) + O(n2 ) .
  2. Given two n x n matrices X and Y, define the 2n x 2n matrices A and B,L as follows:
    A=X000andB=0Y00
    What is AB + BA, in terms of X and Y?
  3. Using (i) and (ii), argue that the product XY can be computed in time 3S(2n) + O(n2 ). Conclude that matrix multiplication takes time O(nc ).

In Section 2.1 we described an algorithm that multiplies two n-bit binary integers x and y in time na, where a=log23. Call this procedure fast multiply (x,y).

(a) We want to convert the decimal integer 10n(a 1 followed by n zeros) into binary. Here is the algorithm (assume n is a power of 2):

function pwr2bin(n)

if n = 1: return10102

else:

z= ???

return fastmultiply(z,z)

Fill in the missing details. Then give a recurrence relation for the running time of the algorithm, and solve the recurrence.

(b) Next, we want to convert any decimal integer x with n digits (where n is a power of 2) into binary. The algorithm is the following:

function dec2bin(x)

if n=1: return binary [ x ]

else:

split x into two decimal numbers xt,xRwith n/2 digits each

return ???

Here binary [.] is a vector that contains the binary representation of all one-digit integers. That is, binary role="math" localid="1659333641173" [0]=02, binary [1]=12, up to binary [9]=10012. Assume that a lookup in binary takes 0(1) time. Fill in the missing details. Once again, give a recurrence for the running time of the algorithm, and solve it.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free