Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give a polynomial-time algorithm for computing,abcmodp given a,b,c, and prime p.

Short Answer

Expert verified

An Algorithm:

Use Fermat’s little theorem

ap-11modp

Apply onabc with twice modular exponentiation operation

abca(bc)modp-1modp

Return a,b,c,p

The algorithm runs in On3time.

Step by step solution

01

Explain Polynomial time algorithm

If an algorithm solves the problem with the O(mk)number of steps for a given input, then the algorithm is a polynomial time algorithm.

02

Give a polynomial-time algorithm for computing,abcmod p,

Consider the Fermat’s little theorem to solve the modular exponentiation.An Algorithm:

Use Fermat’s little theorem

ap-11modp

Apply on with twice modular exponentiation operation

abca(bc)modp-1)modp

Return a,b,c,p

The above algorithm runs in On3time.

Therefore, a polynomial time algorithm ahs be obtained to compute abcmodp.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that instead of using a compositeN=pqin the RSA cryptosystem (Figure 1.9), we simply use a prime modulus p . As in RSA, we would have an encryption exponent e, and the encryption of a message mmodpwould be memodp.Prove that this new cryptosystem is not secure, by giving an efficient algorithm to decrypt: that is, an algorithm that given and p,e,andmemodp as input, computes . Justify the correctness and analyze the running time of your decryption algorithm.

Digital signatures, continued.Consider the signature scheme of Exercise 1.45.

(a) Signing involves decryption, and is therefore risky. Show that if Bob agrees to sign anything he is asked to, Eve can take advantage of this and decrypt any message sent by Alice to Bob.

(b) Suppose that Bob is more careful, and refuses to sign messages if their signatures look suspiciously like text. (We assume that a randomly chosen messagethat is, a random number in the range{1,...,N-1} is very unlikely to look like text.) Describe a way in which Eve can nevertheless still decrypt messages from Alice to Bob, by getting Bob to sign messages whose signatures look random.

Prove or disprove: If a has an inverse modulo b, then b has an inverse modulo a.

1.37. The Chinese remainder theorem.
(a) Make a table with three columns. The first column is all numbers from 0 to 14. The second is the residues of these numbers modulo 3; the third column is the residues modulo 5. What do we observe?
(b) Prove that if p and q are distinct primes, then for every pair (j, k) with 0j<qand 0k<q, there is a unique integer 0i<pqsuch thatijmodp andikmodq. (Hint:
Prove that no two different i's in this range can have the same (j, k), and then count.)
(c) In this one-to-one correspondence between integers and pairs, it is easy to go from i to (j, k). Prove that the following formula takes we the other way:
i={j.qq-1modp+kpp-1modq}modpq
(d) Can we generalize parts (b) and (c) to more than two primes?

Wilson's theorem says that a numberis prime if and only if
(N-1)!=-1(modN).

(a) If is prime, then we know every number1x<p is invertible modulo . Which of thesenumbers is their own inverse?
(b) By pairing up multiplicative inverses, show thatrole="math" localid="1658725109805" (p-1)!=-1(modp) for prime p.
(c) Show that if N is not prime, then(N-1)!(modN) .(Hint: Considerd=gcd(N,(N-1)!.)
(d) Unlike Fermat's Little Theorem, Wilson's theorem is an if-and-only-if condition for primality. Why can't we immediately base a primality test on this rule?

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free