Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20


Show that in any base b2, the sum of any three single-digit numbers is at most two digits long.

Short Answer

Expert verified

Sum of any three single digit number is not as long as of a two-digit number.

Step by step solution

01

Find equation of sum of digits

Let’s assume p,q,r be the single digit numbers in base b.

Let sum of these number besumgiven as:

sum=p+q+r

Given that:

Value of p,q,rlies in range b2

Here, p,q,ris at most b1. For example: in base 10 maximum single digit is 9.

02

Calculate the value of sum

sum=p+q+r=(b1)+(b1)+(b1)=3(b1)

For b=2,

sum=3(21)=3×1=3

Here, sum is a single digit number.

For b=3,

sum=3(31)=3×2=6

Here, sum is a single digit number.

For b=9,

sum=3(91)=3×8=24

Here, sum is a two-digit number.

Thus, the sum is less than b2 and b2 in any base, sum is less than b2 that is represented in two digits.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that if xis a nontrivial square root of 1 modulo N , that is if x21modNbut x±1modN, thenN must be composite. (For instance,421mod15but4±1mod15; thus 4 is a nontrivial square root of 1 modulo 15.)

1.38. To see if a number, say 562437487, is divisible by 3, you just add up the digits of its decimalrepresentation, and see if the result is divisible by role="math" localid="1658402816137" 3.

( 5+6+2+4+3+7+4+8+7=46, so it is not divisible by 3).

To see if the same number is divisible by 11, you can do this: subdivide the number into pairs ofdigits, from the right-hand end(87,74,43,62,5) , add these numbers and see if the sum is divisible by11 (if it's too big, repeat).

How about 37? To see if the number is divisible by 37, subdivide it into triples from the end(487,437,562) add these up, and see if the sum is divisible by37 .


This is true for any prime pother than2 and 5. That is, for any prime p≠2,5, there is an integer rsuch that in order to see ifp divides a decimal number n, we breakn into r-tuples of decimal digits (starting from the right-hand end), add up these r-tuples, and check if the sum is divisible by p.

(a) What is the smallest rsuch for p=13? Forp=13 ?

(b) Show thatr is a divisor of p-1.

Find the inverse of:.20mod79,3mod62,21mod91,5mod23

On page 38, we claimed that since about a 1nfraction of n-bit numbers are prime, on average it is sufficient to draw O(n)random n -bit numbers before hitting a prime. We now justify this rigorously. Suppose a particular coin has a probability p of coming up heads. How many times must you toss it, on average, before it comes up heads? (Hint: Method 1: start by showing that the correct expression isi=1i(1-p)i-1p . Method 2: if E is the average number of coin tosses, show that E=1+(1-p)E).

Consider the problem of computing N!=1·2·3···N.

(a) If Nis an role="math" localid="1658397956489" n-bit number, how many bits long is N!, approximately ( inΘ(·)form)?

(b) Give an algorithm to compute N!and analyze its running time.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free