Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is 222006(mod3)?

Short Answer

Expert verified

The solution is 222006(mod3)=1.

Step by step solution

01

Introduction

A function that returns a number or variable's absolute value is known as a modulus function. The magnitude of the number of variables is produced. Another name for it is an absolute value function. No matter what input was provided to this function, a positive result is always the outcome.

02

Calculating 222006(mod3).

The value starts from n=0. i.e.,

Forn=1,  21=2(mod3)Forn=2,  22=1(mod3)Forn=3,  23=2(mod3)Forn=4,  24=1(mod3)

The even value ofn remainder is1 and for odd it is 2. i.e.,

22n=1(mod3)22n+1=2(mod3)

Therefore, the solution is222006(mod3)=1 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the problem of computing x y for given integers x and y: we want the whole answer, not modulo a third integer. We know two algorithms for doing this: the iterative algorithm which performs y − 1 multiplications by x; and the recursive algorithm based on the binary expansion of y. Compare the time requirements of these two algorithms, assuming that the time to multiply an n-bit number by an m-bit number is O(mn).

Determine necessary and sufficient conditions on xandc so that the following holds: for anya,b, if axbxmodc, thenabmodc .

In an RSA cryptosystem, p = 7and q = 11(as in Figure 1.9). Find appropriate exponents and .

Consider the problem of computing N!=1·2·3···N.

(a) If Nis an role="math" localid="1658397956489" n-bit number, how many bits long is N!, approximately ( inΘ(·)form)?

(b) Give an algorithm to compute N!and analyze its running time.

1.38. To see if a number, say 562437487, is divisible by 3, you just add up the digits of its decimalrepresentation, and see if the result is divisible by role="math" localid="1658402816137" 3.

( 5+6+2+4+3+7+4+8+7=46, so it is not divisible by 3).

To see if the same number is divisible by 11, you can do this: subdivide the number into pairs ofdigits, from the right-hand end(87,74,43,62,5) , add these numbers and see if the sum is divisible by11 (if it's too big, repeat).

How about 37? To see if the number is divisible by 37, subdivide it into triples from the end(487,437,562) add these up, and see if the sum is divisible by37 .


This is true for any prime pother than2 and 5. That is, for any prime p≠2,5, there is an integer rsuch that in order to see ifp divides a decimal number n, we breakn into r-tuples of decimal digits (starting from the right-hand end), add up these r-tuples, and check if the sum is divisible by p.

(a) What is the smallest rsuch for p=13? Forp=13 ?

(b) Show thatr is a divisor of p-1.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free