Chapter 5: Problem 35
Plot a smoothed "hat" function. The "hat" function \(N(x)\) defined by (3.5) on page 109 has a discontinuity in the derivative at \(x=1\). Suppose we want to "round" this function such that it looks smooth around \(x=1\). To this end, replace the straight lines in the vicinity of \(x=1\) by a (small) cubic curve $$ y=a(x-1)^{3}+b(x-1)^{2}+c(x-1)+d $$ for \(x \in[1-\epsilon, 1+\epsilon]\), where \(a, b, c\), and \(d\) are parameters that must be adjusted in order for the cubic curve to match the value and the derivative of the function \(N(x)\). The new rounded functions has the specification $$ \tilde{N}(x)= \begin{cases}0, & x<0 \\ x, & 0 \leq x<1-\epsilon \\\ a_{1}(x-1)^{3}+b(x-1)+c(x-1)+d_{1}, & 1-\epsilon \leq x<1 \\\ a_{2}(x-1)^{3}+b(x-1)+c(x-1)+d_{2}, & 1 \leq x<1+\epsilon \\ 2-x, & 1+\epsilon \leq x<2 \\ 0, & x \geq 2\end{cases} $$ with \(a_{1}=\frac{1}{3} \epsilon^{-2}, a_{2}=-a_{1}, d_{1}=1-\epsilon+a_{1} \epsilon^{3}, d_{2}=1-\epsilon-a_{2} \epsilon^{3}\), and \(b=c=0 .\) Plot this function. (Hint: Be careful with the choice of \(x\) coordinates!) Name of program file: plot_hat.py.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.