Chapter 4: Problem 11
A car driver, driving at velocity \(v_{0}\), suddenly puts on the brake. What braking distance \(d\) is needed to stop the car? One can derive, from basic physics, that $$ d=\frac{1}{2} \frac{v_{0}^{2}}{\mu g} $$ Make a program for computing \(d\) in \((4.7)\) when the initial car velocity \(v_{0}\) and the friction coefficient \(\mu\) are given on the command line. Run the program for two cases: \(v_{0}=120\) and \(v_{0}=50 \mathrm{~km} / \mathrm{h}\), both with \(\mu=0.3\) \((\mu\) is dimensionless). (Remember to convert the velocity from \(\mathrm{km} / \mathrm{h}\) to \(\mathrm{m} / \mathrm{s}\) before inserting the value in the formula!) Name of program file: stopping_length.py.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.