Chapter 1: Problem 15
The Maxwell-Boltzmann probability distribution function. According to the kinetic theory of gases, the energies of molecules moving along the \(x\) direction are given by \(\varepsilon_{x}=(1 / 2) m v_{x}^{2}\), where \(m\) is mass and \(v_{x}\) is the velocity in the \(x\) direction. The distribution of particles over velocities is given by the Boltzmann law, \(p\left(v_{x}\right)=e^{-m v_{x}^{2} / 2 k T}\). This is the Maxwell-Boltzmann distribution (velocities may range from \(-\infty\) to \(+\infty\) ). (a) Write the probability distribution \(p\left(v_{x}\right)\), so that the Maxwell-Boltzmann distribution is correctly normalized. (b) Compute the average energy \(\left\langle\frac{1}{2} m v_{x}^{2}\right\rangle\). (c) What is the average velocity \(\left\langle v_{x}\right\rangle\) ? (d) What is the average momentum \(\left\langle m v_{x}\right\rangle\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.