Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A Bestimmen Sie den Beschleunigungsvektor a(t) bei der gleichmäßigen Rotation. Die Parameterdarstellung der Geschwindigkeit ist: vx(t)=ωrsinωt vy(t)=ωrcosωt B Der Ortsvektor eines Massenpunktes ist gegeben durch r(t)=(Rcosωt,Rsinωt,t). Bestimmen Sie die Geschwindigkeit des Massenpunktes zur Zeit t=2πω. C Der Beschleunigungsvektor ist beim freien Fall gleich g=(0,0,g). Wie sieht der Geschwindigkeitsvektor aus, wenn die Geschwindigkeit zur Zeit t=0 gleich v0=(v0,0,0) ist?

Short Answer

Expert verified
The acceleration vector for part A) is (ω2rcos(ωt),ω2rsin(ωt)), the speed vector at time t=2πω for part B) is Rω,0,1, and the speed vector at time t for part C) is (v0,0,gt).

Step by step solution

01

Calculate acceleration vector for part A)

The acceleration vector is calculated as the derivative of the velocity vector v(t). The components of the velocity vector are given as vx(t)=ωrsin(ωt) and vy(t)=ωrcos(ωt). The acceleration vector a(t) thus becomes: ax(t)=ddt(ωrsin(ωt))=ω2rcos(ωt) and ay(t)=ddt(ωrcos(ωt))=ω2rsin(ωt). This leads to a(t)=(ω2rcos(ωt),ω2rsin(ωt)).
02

Calculate velocity for part B)

The location vector r(t) is given as (Rcos(ωt),Rsin(ωt),t). To find the speed at the time t=2πω, we need to first find the velocity vector v(t)=dr(t)dt. This leads to v(t)=(Rωsin(ωt),Rωcos(ωt),1). At t=2πω, the velocity becomes v(2πω)=(Rω,0,1).
03

Find velocity vector for part C)

In this case, the acceleration vector is equal to the gravitational vector g=(0,0,g) and the initial speed is v0=(v0,0,0). Using the kinematic equation v(t)=v0+gt, we find that the speed at time t is v(t)=(v0,0,gt).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free