Chapter 11: Problem 13
Derive $$ I(x, \theta)= \begin{cases}\frac{\kappa}{4 \pi} \int_{x}^{0} e^{\frac{\kappa\left(x^{\prime}-x\right)}{\cos \theta}} B\left(x^{\prime}\right) \frac{d x^{\prime}}{-\cos \theta} & (-1<\cos \theta<0) \\ \frac{\kappa}{4 \pi} \int_{-\infty}^{x} e^{\frac{k\left(x^{\prime}-x\right)}{\cos \theta}} B\left(x^{\prime}\right) \frac{d x^{\prime}}{\cos \theta} & (0<\cos \theta<1)\end{cases} $$ and give the physical significance of these relations. (b) Show that \(B(x)\) obeys a linear homogeneous integral equation $$ B(x)=\int_{-\infty}^{0} d x^{\prime} K\left(x-x^{\prime}\right) B\left(x^{\prime}\right) $$ and evaluate the kernel \(K\left(x-x^{\prime}\right)\) in terms of the exponential integral function \(E_{1}(z)=\int_{1}^{\infty}(d t / t) e^{-t z} .\) [Note that this integral equation is essentially of the Wiener-Hopf form (1 \(1-65\) ); its sotution may be found in Morse and Feshbach (M9) Section 8.5.]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.