Chapter 6: Problem 6
The purpose in doing the following simple problems is to become familiar with the formulas we have discussed. So a good study method is to do them by hand and then check your results by computer. Compute the divergence and the curl of each of the following vector fields. $$\mathbf{V}=x^{2} y \mathbf{i}+y^{2} x \mathbf{j}+x y z \mathbf{k}$$
Short Answer
Step by step solution
Recall the Divergence Formula
Apply the Divergence Formula
Recall the Curl Formula
Apply the Curl Formula
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Vector Field
The vector field is given by \(\textbf{V} = x^{2} y \textbf{i} + y^{2} x \textbf{j} + x y z \textbf{k}\). Here,
- \textbf{i} is the unit vector in the x-direction,
- \textbf{j} is the unit vector in the y-direction,
- \textbf{k} is the unit vector in the z-direction.
Divergence
\( abla \bullet \textbf{V} = \frac{\text{\textdegree} P}{\text{\textdegree} x} + \frac{\text{\textdegree} Q}{\text{\textdegree} y} + \frac{\text{\textdegree} R}{\text{\textdegree} z} \).
Here, the operators \( \frac{\text{\textdegree} P}{\text{\textdegree} x} \), \( \frac{\text{\textdegree} Q}{\text{\textdegree} y} \), and \( \frac{\text{\textdegree} R}{\text{\textdegree} z} \) are partial derivatives describing how each component of the vector field changes with respect to x, y, and z respectively.
- For \( P = x^{2} y \), \( Q = y^{2} x \), and \( R = x y z \), we get:
- \( \frac{\text{\textdegree} P}{\text{\textdegree} x} = 2xy \),
- \( \frac{\text{\textdegree} Q}{\text{\textdegree} y} = 2xy \),
- \( \frac{\text{\textdegree} R}{\text{\textdegree} z} = xy \).
Curl
\[ abla \times \textbf{V} = \begin{vmatrix} \textbf{i} & \textbf{j} & \textbf{k} \ \frac{\text{\textdegree}}{\text{\textdegree} x} & \frac{\text{\textdegree}}{\text{\textdegree} y} & \frac{\text{\textdegree}}{\text{\textdegree} z} \ P & Q & R \ \end{vmatrix} \].
This determinant expands to:
\[ abla \times \textbf{V} = \textbf{i}\bigg( \frac{\text{\textdegree} R}{\text{\textdegree} y} - \frac{\text{\textdegree} Q}{\text{\textdegree} z} \bigg) - \textbf{j}\bigg( \frac{\text{\textdegree} R}{\text{\textdegree} x} - \frac{\text{\textdegree} P}{\text{\textdegree} z} \bigg) + \textbf{k}\bigg( \frac{\text{\text{\textdegree}}Q}{\text{\text{\textdegree}} x} - \frac{\text{\text{\textdegree}}P}{\text{\text{\textdegree}} y} \bigg) \].
For the given exercise, substituting \( P = x^{2} y, Q = y^{2} x, R = x y z \) into the determinant form gives:
- \textbf{i} component: \( \frac{\text{\text{\textdegree}} (x y z)}{\text{\textdegree} y} - \frac{\text{\text{\textdegree}} (y^{2} x)}{\text{\text{\textdegree}} z} = xz \),
- \textbf{j} component: \( \frac{\text{\text{\textdegree}} (x y z)}{\text{\text{\textdegree}} x} - \frac{\text{\text{\textdegree}} (x^{2} y)}{\text{\text{\textdegree}} z} = -yz \),
- \textbf{k} component: \( \frac{\text{\text{\textdegree}} (y^{2} x)}{\text{\text{\textdegree}} x} - \frac{\text{\text{\textdegree}} (x^{2} y)}{\text{\text{\textdegree}} y} = 0 \).
Partial Derivatives
In this exercise, we take partial derivatives to find the divergence and curl of a vector field. For example:
- Given \( P = x^{2} y \), the partial derivative with respect to \( x \) is \( \frac{\text{\textdegree} P}{\text{\textdegree} x} = 2xy \).
- For \( Q = y^{2} x \), the partial derivative with respect to \( y \) is \( \frac{\text{\textdegree} Q}{\text{\textdegree} y} = 2yx = 2xy \).
- For \( R = x y z \), the partial derivative with respect to \( z \) is \( \frac{\text{\textdegree} R}{\text{\textdegree} z} = xy \).