Chapter 6: Problem 4
Show that \(\nabla \cdot(\mathbf{U} \times \mathbf{r})=\mathbf{r} \cdot(\nabla \times \mathbf{U})\) where \(\mathbf{U}\) is a vector function of \(x, y, z,\) and \(\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}\).
Short Answer
Expert verified
\( abla \cdot ( \mathbf{U} \times \mathbf{r} ) = \mathbf{r} \cdot ( abla \times \mathbf{U} ) \)
Step by step solution
01
- Understand the Given Vectors
Identify the given vectors. Here, \( \mathbf{U} \) is a vector function of \( x, y, z \) and \( \mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \) is the position vector.
02
- Use Vector Triple Product Identity
Recall the vector triple product identity: \( abla \cdot ( \mathbf{U} \times \mathbf{r} ) = \mathbf{r} \cdot ( abla \times \mathbf{U} ) \). We need to show that this identity holds in this particular case.
03
- Compute \( \mathbf{U} \times \mathbf{r} \)
Calculate \( \mathbf{U} \times \mathbf{r} \). Using the cross product formula, we get:\[ \mathbf{U} \times \mathbf{r} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ U_x & U_y & U_z \ x & y & z \end{vmatrix} \]Expanding this determinant, we have:\[ \mathbf{U} \times \mathbf{r} = (U_y z - U_z y) \mathbf{i} + (U_z x - U_x z) \mathbf{j} + (U_x y - U_y x) \mathbf{k} \]
04
- Take the Divergence
Now take the divergence of \( \mathbf{U} \times \mathbf{r} \): \[ abla \cdot ( \mathbf{U} \times \mathbf{r} ) = \frac{\partial }{\partial x} (U_y z - U_z y) + \frac{\partial }{\partial y} (U_z x - U_x z) + \frac{\partial }{\partial z} (U_x y - U_y x) \]
05
- Compute Partial Derivatives
Evaluate each partial derivative term by term:\( \frac{\partial }{\partial x} (U_y z - U_z y) = z \frac{\partial U_y}{\partial x} - y \frac{\partial U_z}{\partial x} \)\( \frac{\partial }{\partial y} (U_z x - U_x z) = x \frac{\partial U_z}{\partial y} - z \frac{\partial U_x}{\partial y} \)\( \frac{\partial }{\partial z} (U_x y - U_y x) = y \frac{\partial U_x}{\partial z} - x \frac{\partial U_y}{\partial z} \)
06
- Combine Results
Sum the results from the partial derivatives: \[ abla \cdot ( \mathbf{U} \times \mathbf{r} ) = z \frac{\partial U_y}{\partial x} - y \frac{\partial U_z}{\partial x} + x \frac{\partial U_z}{\partial y} - z \frac{\partial U_x}{\partial y} + y \frac{\partial U_x}{\partial z} - x \frac{\partial U_y}{\partial z} \]Notice that these terms are exactly the components of the dot product \( \mathbf{r} \cdot ( abla \times \mathbf{U} ) \).
07
- Confirm Equivalent Expression for Curl
Compare this to the calculation of the curl:\( abla \times \mathbf{U} = \left( \frac{\partial U_z}{\partial y} - \frac{\partial U_y}{\partial z} \right) \mathbf{i} + \left( \frac{\partial U_x}{\partial z} - \frac{\partial U_z}{\partial x} \right) \mathbf{j} + \left( \frac{\partial U_y}{\partial x} - \frac{\partial U_x}{\partial y} \right) \mathbf{k} \)Thus, \( \mathbf{r} \cdot ( abla \times \mathbf{U} ) = x \left( \frac{\partial U_z}{\partial y} - \frac{\partial U_y}{\partial z} \right) + y \left( \frac{\partial U_x}{\partial z} - \frac{\partial U_z}{\partial x} \right) + z \left( \frac{\partial U_y}{\partial x} - \frac{\partial U_x}{\partial y} \right) \)
08
- Verify Equality
Observe that the expression for the divergence \( abla \cdot ( \mathbf{U} \times \mathbf{r} ) \) is exactly the same as the dot product \( \mathbf{r} \cdot ( abla \times \mathbf{U} ) \). Thus,\[ abla \cdot ( \mathbf{U} \times \mathbf{r} ) = \mathbf{r} \cdot ( abla \times \mathbf{U} ) \]
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Vector Triple Product Identity
The vector triple product identity is a crucial tool in vector calculus. It simplifies the manipulation of cross products and dot products involving three vectors. The identity states that given vectors \(\textbf{A}\), \(\textbf{B}\), and \(\textbf{C}\), the expression \(\textbf{A} \times (\textbf{B} \times \textbf{C})\) can be rewritten as \((\textbf{A} \cdot \textbf{C}) \textbf{B} - (\textbf{A} \cdot \textbf{B}) \textbf{C}\). This identity helps in simplifying components and understanding vector fields.
To show that \(abla \cdot (\textbf{U} \times \textbf{r}) = \textbf{r} \cdot (abla \times \textbf{U})\), where \textbf{U}\ is a vector function and \(\textbf{r}= x \textbf{i} + y \textbf{j} + z \textbf{k}\), we recognize that both sides of the equation describe the same vector operation in different forms.
By applying the vector triple product identity, we can handle these cross and dot products in a more structured and concise way.
To show that \(abla \cdot (\textbf{U} \times \textbf{r}) = \textbf{r} \cdot (abla \times \textbf{U})\), where \textbf{U}\ is a vector function and \(\textbf{r}= x \textbf{i} + y \textbf{j} + z \textbf{k}\), we recognize that both sides of the equation describe the same vector operation in different forms.
By applying the vector triple product identity, we can handle these cross and dot products in a more structured and concise way.
Cross Product
The cross product of two vectors results in a third vector that is perpendicular to the plane of the first two. For vectors \(\textbf{A} = a_1 \textbf{i} + a_2 \textbf{j} + a_3 \textbf{k}\) and \(\textbf{B} = b_1 \textbf{i} + b_2 \textbf{j} + b_3 \textbf{k}\), the cross product \(\textbf{A} \times \textbf{B}\) is given by the determinant: \(\textbf{A} \times \textbf{B} = \begin{vmatrix} \textbf{i} & \textbf{j} & \textbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{vmatrix}\).
Expanding this determinant, we get \(\textbf{A} \times \textbf{B} = (a_2 b_3 - a_3 b_2) \textbf{i} + (a_3 b_1 - a_1 b_3) \textbf{j} + (a_1 b_2 - a_2 b_1) \textbf{k}\). In the given exercise, applying the cross product formula to \(\textbf{U} \times \textbf{r}\) yields: \((U_y z - U_z y) \textbf{i} + (U_z x - U_x z) \textbf{j} + (U_x y - U_y x) \textbf{k}\).
This operation is essential for constructing vector fields and capturing rotational aspects of the system in question.
Expanding this determinant, we get \(\textbf{A} \times \textbf{B} = (a_2 b_3 - a_3 b_2) \textbf{i} + (a_3 b_1 - a_1 b_3) \textbf{j} + (a_1 b_2 - a_2 b_1) \textbf{k}\). In the given exercise, applying the cross product formula to \(\textbf{U} \times \textbf{r}\) yields: \((U_y z - U_z y) \textbf{i} + (U_z x - U_x z) \textbf{j} + (U_x y - U_y x) \textbf{k}\).
This operation is essential for constructing vector fields and capturing rotational aspects of the system in question.
Divergence
Divergence measures how much a vector field is spreading out from a given point. For a vector field \(\textbf{F} = P \textbf{i} + Q \textbf{j} + R \textbf{k}\), its divergence is given by \(abla \cdot \textbf{F} = \frac{\text{∂}P}{\text{∂}x} + \frac{\text{∂}Q}{\text{∂}y} + \frac{\text{∂}R}{\text{∂}z}\).
In the given exercise, we apply this to \(\textbf{U} \times \textbf{r}\) to find its divergence: \(abla \cdot (\textbf{U} \times \textbf{r}) = \frac{\text{∂}}{\text{∂}x}(U_y z - U_z y) + \frac{\text{∂}}{\text{∂}y}(U_z x - U_x z) + \frac{\text{∂}}{\text{∂}z}(U_x y - U_y x)\).
By computing these partial derivatives step-by-step, we demonstrate that the divergence of the cross product equates to the dot product of \(\textbf{r}\) and the curl of \(\textbf{U}\), providing insight into how vector fields interact and evolve.
In the given exercise, we apply this to \(\textbf{U} \times \textbf{r}\) to find its divergence: \(abla \cdot (\textbf{U} \times \textbf{r}) = \frac{\text{∂}}{\text{∂}x}(U_y z - U_z y) + \frac{\text{∂}}{\text{∂}y}(U_z x - U_x z) + \frac{\text{∂}}{\text{∂}z}(U_x y - U_y x)\).
By computing these partial derivatives step-by-step, we demonstrate that the divergence of the cross product equates to the dot product of \(\textbf{r}\) and the curl of \(\textbf{U}\), providing insight into how vector fields interact and evolve.
Curl
Curl measures the rotational component of a vector field. It is a vector operation that takes a vector field and returns another vector field, which represents the rotation at each point. For a vector field \(\textbf{F} = P \textbf{i} + Q \textbf{j} + R \textbf{k}\), the curl is given by \(abla \times \textbf{F} = \begin{vmatrix} \textbf{i} & \textbf{j} & \textbf{k} \ \frac{\text{∂}}{\text{∂}x} & \frac{\text{∂}}{\text{∂}y} & \frac{\text{∂}}{\text{∂}z} \ P & Q & R \end{vmatrix}\).
This results in: \(abla \times \textbf{F} = \bigg(\frac{\text{∂}R}{\text{∂}y} - \frac{\text{∂}Q}{\text{∂}z}\bigg) \textbf{i} + \bigg(\frac{\text{∂}P}{\text{∂}z} - \frac{\text{∂}R}{\text{∂}x}\bigg) \textbf{j} + \bigg(\frac{\text{∂}Q}{\text{∂}x} - \frac{\text{∂}P}{\text{∂}y}\bigg) \textbf{k}\).
In the given exercise, evaluating \(abla \times \textbf{U}\) and taking the dot product with \(\textbf{r}\) lets us connect to the divergence of \(\textbf{U} \times \textbf{r}\). Summing these ways to explore vector fields reveals how they twist and turn, providing a deeper grasp of physical phenomena in fields like electromagnetism and fluid mechanics.
This results in: \(abla \times \textbf{F} = \bigg(\frac{\text{∂}R}{\text{∂}y} - \frac{\text{∂}Q}{\text{∂}z}\bigg) \textbf{i} + \bigg(\frac{\text{∂}P}{\text{∂}z} - \frac{\text{∂}R}{\text{∂}x}\bigg) \textbf{j} + \bigg(\frac{\text{∂}Q}{\text{∂}x} - \frac{\text{∂}P}{\text{∂}y}\bigg) \textbf{k}\).
In the given exercise, evaluating \(abla \times \textbf{U}\) and taking the dot product with \(\textbf{r}\) lets us connect to the divergence of \(\textbf{U} \times \textbf{r}\). Summing these ways to explore vector fields reveals how they twist and turn, providing a deeper grasp of physical phenomena in fields like electromagnetism and fluid mechanics.