Chapter 5: Problem 7
The following notation is used in the problems: \(M=\) mass, \(\bar{x}, \bar{y}, \bar{z}=\) coordinates of center of mass (or centroid if the density is constant), \(I=\) moment of inertia (about axis stated), \(I_{x}, I_{y}, I_{z}=\) moments of inertia about \(x, y, z\) axes, \(I_{m}=\) moment of inertia (about axis stated) through the center of mass. Note: It is customary to give answers for \(I, I_{m}, I_{x},\) etc., as multiples of \(M\) (for example, \(I=\frac{1}{3} M l^{2}\) ). A rectangular lamina has vertices (0,0),(0,2),(3,0),(3,2) and density \(x y .\) Find (a) \(M\), (b) \(\bar{x}, \bar{y}\), (c) \(I_{x}, I_{y}\), (d) \( I_{m}\) about an axis parallel to the \(z\) axis. Hint: Use the parallel axis theorem and the perpendicular axis theorem.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.