Chapter 4: Problem 16
The operating equation for a synchrotron in the relativistic range is $$ q B=\omega m\left[1-(\omega R)^{2} / c^{2}\right]^{-1 / 2} $$ where \(q\) and \(m\) are the charge and rest mass of the particle being accelerated, \(B\) is the magnetic field strength, \(R\) is the orbit radius, \(\omega\) is the angular frequency, and \(c\) is the speed of light. If \(\omega\) and \(B\) are varied (all other quantities constant), show that the relation between \(d \omega\) and \(d B\) can be written as $$ \frac{d B}{B^{3}}=\left(\frac{q}{m}\right)^{2} \frac{d \omega}{\omega^{3}} $$ or as \(\quad \frac{d B}{B}=\frac{d \omega}{\omega}\left[1-(\omega R / c)^{2}\right]^{-1}.\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.