Chapter 3: Problem 19
Find the eigenvalues and eigenvectors of the matrices in the following problems. $$\left(\begin{array}{ll}5 & 1 \\\4 & 2\end{array}\right)$$
Short Answer
Expert verified
Eigenvalues: \(\lambda_1 = 6\), \(\lambda_2 = 1\). Eigenvectors: \mathbf{v_1} = \begin{pmatrix} 1 \ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \ -4 \end{pmatrix}.
Step by step solution
01
- Find the Characteristic Equation
The characteristic equation is found using the determinant of the matrix \(A - \lambda I\). For the given matrix \(A = \begin{pmatrix} 5 & 1 \ 4 & 2 \end{pmatrix}\), compute the determinant of \(A - \lambda I\): \[ \text{det}(A - \lambda I) = \begin{vmatrix} 5 - \lambda & 1 \ 4 & 2 - \lambda \end{vmatrix} = (5 - \lambda)(2 - \lambda) - 4 \].
02
- Simplify the Determinant
Expand and simplify the determinant to find the characteristic polynomial: \[(5 - \lambda)(2 - \lambda) - 4 = 10 - 5\lambda - 2\lambda + \lambda^2 - 4 = \lambda^2 - 7\lambda + 6 \].
03
- Solve the Characteristic Equation
Set the characteristic polynomial equal to zero to find the eigenvalues: \[\lambda^2 - 7\lambda + 6 = 0 \]. Factor the quadratic equation: \[(\lambda - 6)(\lambda - 1) = 0 \]. Hence, the eigenvalues are \(\lambda_1 = 6\) and \(\lambda_2 = 1\).
04
- Find Eigenvectors for \(\lambda_1 = 6\)
Substitute \(\lambda_1 = 6\) back into \(A - \lambda I\) to find the eigenvector: \[ \begin{pmatrix} 5 - 6 & 1 \ 4 & 2 - 6 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 1 \ 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \].
05
- Solve for Eigenvector \(\mathbf{v_1}\)
Solving the system, we get \( -x_1 + x_2 = 0 \) or \x_2 = x_1 \. The eigenvector for \(\lambda_1 = 6\) is any scalar multiple of \( \mathbf{v_1} = \begin{pmatrix} 1 \ 1 \end{pmatrix} \).
06
- Find Eigenvectors for \(\lambda_2 = 1\)
Substitute \(\lambda_2 = 1\) back into \(A - \lambda I\) to find the eigenvector: \[ \begin{pmatrix} 5 - 1 & 1 \ 4 & 2 - 1 \end{pmatrix} \begin{pmatrix} y_1 \ y_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 & 1 \ 4 & 1 \end{pmatrix} \begin{pmatrix} y_1 \ y_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \].
07
- Solve for Eigenvector \(\mathbf{v_2}\)
Solving the system, we get \( 4y_1 + y_2 = 0 \) or \y_2 = -4y_1 \. The eigenvector for \(\lambda_2 = 1\) is any scalar multiple of \(\begin{pmatrix} 1 \ -4 \end{pmatrix} \).
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Characteristic Equation
In linear algebra, the characteristic equation is a crucial step in finding eigenvalues of a matrix. For a given matrix, say, \(A\), we derive the characteristic equation by calculating the determinant of \(A - \lambda I\) where \(\lambda\) is a scalar and \(I\) is the identity matrix of the same dimension as \(A\). The determinant must be set to zero, as follows:
\[ \text{{det}}(A - \lambda I) = 0 \]
In our given example matrix, \[A = \begin{pmatrix} 5 & 1 \ 4 & 2 \end{pmatrix}, alchemy.\] we calculate the determinant of \(A - \lambda I\):
\[ \text{{det}}(\begin{pmatrix} 5 - \lambda & 1\ \ 4 & 2 - \lambda \end{pmatrix}) = (5 - \lambda)(2 - \lambda) - 4 = \lambda^2 - 7\lambda + 6 \]
This polynomial equation is the characteristic equation. It must be solved to find the eigenvalues \(\lambda\).
\[ \text{{det}}(A - \lambda I) = 0 \]
In our given example matrix, \[A = \begin{pmatrix} 5 & 1 \ 4 & 2 \end{pmatrix}, alchemy.\] we calculate the determinant of \(A - \lambda I\):
\[ \text{{det}}(\begin{pmatrix} 5 - \lambda & 1\ \ 4 & 2 - \lambda \end{pmatrix}) = (5 - \lambda)(2 - \lambda) - 4 = \lambda^2 - 7\lambda + 6 \]
This polynomial equation is the characteristic equation. It must be solved to find the eigenvalues \(\lambda\).
Determinant
The determinant is a special scalar value that can be computed from the elements of a square matrix. It provides essential properties such as whether the matrix is invertible. To calculate the determinant of a 2x2 matrix \(\begin{pmatrix}a & b \ c & d\end{pmatrix}\), use the formula:
\[ \det \begin{pmatrix} a & b \ c & d \end{pmatrix} = ad - bc \]
For the matrix \(\begin{pmatrix} 5 & 1 \ 4 & 2 \end{pmatrix}\), the determinant calculation steps are:
\[ \text{{det}}\begin{pmatrix} 5 - \lambda & 1\ \ 4 & 2 - \lambda \end{pmatrix} = (5 - \lambda)(2 - \lambda) - 4 \]
This becomes our characteristic polynomial \(\lambda^2 - 7\////////////lambda + 6 \).
\[ \det \begin{pmatrix} a & b \ c & d \end{pmatrix} = ad - bc \]
For the matrix \(\begin{pmatrix} 5 & 1 \ 4 & 2 \end{pmatrix}\), the determinant calculation steps are:
\[ \text{{det}}\begin{pmatrix} 5 - \lambda & 1\ \ 4 & 2 - \lambda \end{pmatrix} = (5 - \lambda)(2 - \lambda) - 4 \]
This becomes our characteristic polynomial \(\lambda^2 - 7\////////////lambda + 6 \).
Eigenvalues
Eigenvalues are the special set of scalars associated with a linear system of equations, i.e., a matrix equation. They are found by solving the characteristic equation. For our example, the characteristic polynomial is:
\[ \lambda^2 - 7\lambda + 6 = 0 \]
Solving this quadratic equation by factoring, we get:
\[ (\lambda - 6)(\lambda - 1) = 0 \]
Thus, the eigenvalues are \(\lambda_1 = 6\) and \(\lambda_2 = 1\).
\[ \lambda^2 - 7\lambda + 6 = 0 \]
Solving this quadratic equation by factoring, we get:
\[ (\lambda - 6)(\lambda - 1) = 0 \]
Thus, the eigenvalues are \(\lambda_1 = 6\) and \(\lambda_2 = 1\).
Eigenvectors
Once eigenvalues are determined, eigenvectors can be found. These are vectors that, when multiplied by the matrix, yield a scalar multiple of themselves—i.e., they do not change direction. For each eigenvalue, say, \(\lambda_i\), the eigenvector \(\text{{v}}_i\) can be found using the equation:
\[ (A - \lambda_i I)\text{{v}}_i = 0 \]
For our example, for the eigenvalue \(\lambda_1 = 6\) we solve:
\[ \begin{pmatrix} -1 & 1 \ 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \]
Similarly, for \(\lambda_2 = 1\),
\[ \begin{pmatrix} 4 & 1 \ 4 & 1 \end{pmatrix} \begin{pmatrix} y_1 \ y_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \]
Both systems yield solutions for the respective eigenvectors.
\[ (A - \lambda_i I)\text{{v}}_i = 0 \]
For our example, for the eigenvalue \(\lambda_1 = 6\) we solve:
\[ \begin{pmatrix} -1 & 1 \ 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \]
Similarly, for \(\lambda_2 = 1\),
\[ \begin{pmatrix} 4 & 1 \ 4 & 1 \end{pmatrix} \begin{pmatrix} y_1 \ y_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \]
Both systems yield solutions for the respective eigenvectors.
Quadratic Equation
Quadratic equations are polynomial equations of the form \(\text{{ax}}^2 + bx + c = 0\). They can be solved using factoring, completing the square, or the quadratic formula. In our context, the characteristic equation is a quadratic equation, \[ \lambda^2 - 7\lambda + 6 = 0 \]
We solve this by factoring:
\[ (\lambda - 6)(\lambda - 1) = 0 \implies \] \( \lambda_1 = 6\) and \(\lambda_2 = 1\).
We solve this by factoring:
\[ (\lambda - 6)(\lambda - 1) = 0 \implies \] \( \lambda_1 = 6\) and \(\lambda_2 = 1\).