Chapter 3: Problem 14
Show that the \(n\) -rowed determinant $$\left|\begin{array}{ccccccc} \cos \theta & 1 & 0 & 0 & & & 0 \\ 1 & 2 \cos \theta & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 2 \cos \theta & 1 & & & 0 \\ 0 & 0 & 1 & 2 \cos \theta & & & 0 \\ & & \vdots & & \ddots & & \vdots \\ & & & & & & \\ & & \vdots & & & 2 \cos \theta & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2 \cos \theta \end{array}\right|=\cos n \theta$$ Hint: Expand using elements of the last row or column. Use mathematical induction and the trigonometric addition formulas.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.