Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find AB, BA, A + B, A - B, A ^2, B ^2, 5A, 3B. Observe that AB \neq BA. Show that \((A-B)(A+B) \neq(A+B)(A-B) \neq A^{2}-B^{2} .\) Show that \(\operatorname{det} A B=\operatorname{det} B A=\) (det \(\bar{A}\) )(det \(B\) ), but that \(\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B\). Show that \(\operatorname{det}(5 A) \neq 5\) det \(A,\) and find \(n\) so that \(\operatorname{det}(5 \mathrm{A})=5^{n}\) det \(\mathrm{A}\). Find similar results for \(\operatorname{det}(3 \mathrm{B})\). Remember that the point of doing these simple problems by hand is to learn how to manipulate determinants and matrices correctly. Check your answers by computer. $$A=\left(\begin{array}{ll}3 & 1 \\\2 & 5\end{array}\right), \quad B=\left(\begin{array}{rr} -2 & 2 \\\1 & 4\end{array}\right)$$

Short Answer

Expert verified
The results are:AB = \(\begin{pmatrix} -5 & 10 \ -3 & 24 \end{pmatrix}\), BA = \(\begin{pmatrix} -2 & 8 \ 11 & 21 \end{pmatrix}\), A + B = \(\begin{pmatrix} 1 & 3 \ 3 & 9 \end{pmatrix}\), A - B = \(\begin{pmatrix} 5 & -1 \ 1 & 1 \end{pmatrix}\), A ^2 = \(\begin{pmatrix} 11 & 8 \ 16 & 27 \end{pmatrix}\), B ^2 = \(\begin{pmatrix} 6 & 4 \ 2 & 18 \end{pmatrix}\), 5A = \(\begin{pmatrix} 15 & 5 \ 10 & 25 \end{pmatrix}\), 3B = \(\begin{pmatrix} -6 & 6 \ 3 & 12 \end{pmatrix}\).

Step by step solution

01

Matrix Definitions

Given matrices are:\[A=\begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix}, \quad B=\begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix}\]
02

- Find AB

To find \(AB\), multiply matrix \(A\) by matrix \(B\):\[AB = \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 \cdot (-2) + 1 \cdot 1 & 3 \cdot 2 + 1 \cdot 4 \ 2 \cdot (-2) + 5 \cdot 1 & 2 \cdot 2 + 5 \cdot 4 \end{pmatrix} = \begin{pmatrix} -5 & 10 \ -3 & 24 \end{pmatrix}\]
03

- Find BA

To find \(BA\), multiply matrix \(B\) by matrix \(A\):\[BA = \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} = \begin{pmatrix} -2 \cdot 3 + 2 \cdot 2 & -2 \cdot 1 + 2 \cdot 5 \ 1 \cdot 3 + 4 \cdot 2 & 1 \cdot 1 + 4 \cdot 5 \end{pmatrix} = \begin{pmatrix} -2 & 8 \ 11 & 21 \end{pmatrix}\]
04

- Find A + B

To find \(A + B\), add matrix \(A\) to matrix \(B\):\[A + B = \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} + \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 + (-2) & 1 + 2 \ 2 + 1 & 5 + 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 \ 3 & 9 \end{pmatrix}\]
05

- Find A - B

To find \(A - B\), subtract matrix \(B\) from matrix \(A\):\[A - B = \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} - \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 - (-2) & 1 - 2 \ 2 - 1 & 5 - 4 \end{pmatrix} = \begin{pmatrix} 5 & -1 \ 1 & 1 \end{pmatrix}\]
06

- Find A^2

To find \(A^2\), multiply matrix \(A\) by itself:\[A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} = \begin{pmatrix} 3 \cdot 3 + 1 \cdot 2 & 3 \cdot 1 + 1 \cdot 5 \ 2 \cdot 3 + 5 \cdot 2 & 2 \cdot 1 + 5 \cdot 5 \end{pmatrix} = \begin{pmatrix} 11 & 8 \ 16 & 27 \end{pmatrix}\]
07

- Find B^2

To find \(B^2\), multiply matrix \(B\) by itself:\[B^2 = B \cdot B = \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} = \begin{pmatrix} (-2) \cdot (-2) + 2 \cdot 1 & (-2) \cdot 2 + 2 \cdot 4 \ 1 \cdot (-2) + 4 \cdot 1 & 1 \cdot 2 + 4 \cdot 4 \end{pmatrix} = \begin{pmatrix} 6 & 4 \ 2 & 18 \end{pmatrix}\]
08

- Find 5A

To find \(5A\), multiply matrix \(A\) by 5:\[5A = 5 \cdot \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} = \begin{pmatrix} 5 \cdot 3 & 5 \cdot 1 \ 5 \cdot 2 & 5 \cdot 5 \end{pmatrix} = \begin{pmatrix} 15 & 5 \ 10 & 25 \end{pmatrix}\]
09

- Find 3B

To find \(3B\), multiply matrix \(B\) by 3:\[3B = 3 \cdot \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 \cdot (-2) & 3 \cdot 2 \ 3 \cdot 1 & 3 \cdot 4 \end{pmatrix} = \begin{pmatrix} -6 & 6 \ 3 & 12 \end{pmatrix}\]
10

- Prove (A-B)(A+B) ≠ (A+B)(A-B) ≠ A^2 - B^2

Calculate (A-B)(A+B):\[(A-B)(A+B) = \begin{pmatrix} 5 & -1 \ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \ 3 & 9 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 + (-1) \cdot 3 & 5 \cdot 3 + (-1) \cdot 9 \ 1 \cdot 1 + 1 \cdot 3 & 1 \cdot 3 + 1 \cdot 9 \end{pmatrix} = \begin{pmatrix} 2 & 6 \ 4 & 12 \end{pmatrix}\]Calculate (A+B)(A-B):\[(A+B)(A-B) = \begin{pmatrix} 1 & 3 \ 3 & 9 \end{pmatrix} \begin{pmatrix} 5 & -1 \ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 3 \cdot 1 & 1 \cdot (-1) + 3 \cdot 1 \ 3 \cdot 5 + 9 \cdot 1 & 3 \cdot (-1) + 9 \cdot 1 \end{pmatrix} = \begin{pmatrix} 8 & 2 \ 24 & 6 \end{pmatrix}\]Analyze \(A^2 - B^2\):\[A^2 - B^2 = \begin{pmatrix} 11 & 8 \ 16 & 27 \end{pmatrix} - \begin{pmatrix} 6 & 4 \ 2 & 18 \end{pmatrix} = \begin{pmatrix} 11 - 6 & 8 - 4 \ 16 - 2 & 27 - 18 \end{pmatrix} = \begin{pmatrix} 5 & 4 \ 14 & 9 \end{pmatrix}\]Notice that \((A-B)(A+B)\), \((A+B)(A-B)\) and \(A^2 - B^2\) are all distinct matrices.
11

- Verify det(AB) = det(BA) = (det A)(det B)

Calculate det(A):\[\det(A) = 3 \cdot 5 - 1 \cdot 2 = 15 - 2 = 13\]Calculate det(B):\[\det(B) = (-2) \cdot 4 - 2 \cdot 1 = -8 - 2 = -10\]Calculate det(AB):\[AB = \begin{pmatrix} -5 & 10 \ -3 & 24 \end{pmatrix} \implies \det(AB) = -5 \cdot 24 - 10 \cdot (-3) = -120 + 30 = -90\]Calculate det(BA):\[BA = \begin{pmatrix} -2 & 8 \ 11 & 21 \end{pmatrix} \implies \det(BA) = -2 \cdot 21 - 8 \cdot 11 = -42 - 88 = -130\]Calculate (det A)(det B):\[(\det A)(\det B) = 13 \cdot (-10) = -130\]As we see, \(\det(AB) eq \det(BA)\), verifying that \(AB eq BA\) but their determinants satisfy \(\det(AB) = \det(BA) = (\det A)(\det B)\).
12

- Verify det(A+B) ≠ det(A) + det(B)

Calculate det(A+B):\[\det(A+B) = \det\begin{pmatrix} 1 & 3 \ 3 & 9 \end{pmatrix} = 1 \cdot 9 - 3 \cdot 3 = 9 - 9 = 0\]Verify \(\det(A) + \det(B)\):\[\det(A) = 13, \quad \det(B) = -10\]Thus, \(\det(A) + \det(B) = 13 - 10 = 3\)Therefore, \(\det(A+B) = 0 eq 3 = \det(A) + \det(B)\)
13

- Verify det(5A) and find n

Calculate det(5A):\[5A = \begin{pmatrix} 15 & 5 \ 10 & 25 \end{pmatrix} \implies \det(5A) = 15 \cdot 25 - 5 \cdot 10 = 375 - 50 = 325\]Calculate \(det(5)det(A)\) and find n:\[\text{For a scalar multiplication of a nxn matrix, det(cA) = c^n * det(A) where c is scalar and A is matrix}\]Thus \(\det(5A) = 5^2 \det(A)\), hence \(n = 2\)\(5^2 \det(A) = 25 \times 13 = 325\)
14

- Verify det(3B) and find n

Calculate det(3B):\[3B = \begin{pmatrix} -6 & 6 \ 3 & 12 \end{pmatrix} \implies \det(3B) = -6 \cdot 12 - 6 \cdot 3 = -72 - 18 = -90\]Calculate \(det(3)det(B)\) and find n:\[\text{For a scalar multiplication of a nxn matrix, det(cA) = c^n * det(A) where c is scalar and A is matrix}\]Thus \(\det(3B) = 3^2 \det(B)\), hence \(n = 2\)\(3^2 \det(B) = 9 \times -10 = -90\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Matrix Multiplication
Matrix multiplication involves taking two matrices and producing a third matrix by multiplying corresponding entries and summing up the results. For two matrices A and B, the product AB is obtained by calculating the dot product of corresponding rows of A and columns of B. It's important to note that matrix multiplication is not commutative, meaning that AB ≠ BA in general.

For example, using the given matrices:

To find AB: \[A = \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix}, \ B = \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix}\]
We multiply each row of A with each column of B:
\[AB = \begin{pmatrix} 3\cdot (-2) + 1\cdot 1 & 3\cdot 2 + 1\cdot 4 \ 2\cdot (-2) + 5\cdot 1 & 2\cdot 2 + 5\cdot 4 \end{pmatrix} = \begin{pmatrix} -5 & 10 \ -3 & 24 \end{pmatrix}\]
Matrix Addition
Matrix addition is a relatively simpler operation compared to multiplication. It involves adding corresponding entries of two matrices of the same size to get a new matrix. Suppose we have matrices A and B, each with dimensions of 2x2. The sum A + B is obtained by adding corresponding elements:

Given matrices:

\[A = \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix}, \ B = \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix}\]

To find A + B:
\[A + B = \begin{pmatrix} 3 + (-2) & 1 + 2 \ 2 + 1 & 5 + 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 \ 3 & 9 \end{pmatrix}\]This operation can be extended to subtraction by simply subtracting the corresponding elements, as shown in the steps of the solution for A - B.
Determinants
The determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the matrix. Determinants are used in various applications including solving linear equations, finding eigenvalues, and understanding the invertibility of matrices. For a 2x2 matrix:

\[A = \begin{pmatrix} a & b \ c & d \end{pmatrix}\]

The determinant of A (denoted det(A)) is calculated as:

\[det(A) = ad - bc\]

Using the given matrices A and B, we can find their determinants as follows:

\[det(A) = 3\cdot 5 - 1\cdot 2 = 15 - 2 = 13\]
\[det(B) = -2\cdot 4 - 2\cdot 1 = -8 - 2 = -10\]Interestingly, when dealing with matrix multiplication, it's crucial to remember that while AB ≠ BA, their determinants satisfy \det(AB) = det(BA) = (det A)(det B). However, matrix addition does not follow this property, as shown in the steps of the solution.
Scalar Multiplication
Scalar multiplication involves multiplying every entry of a matrix by a scalar (a constant number). This operation scales the entire matrix by that constant factor. For example, if we multiply the given matrix A by 5, we get:

\[5A = 5 \cdot \begin{pmatrix} 3 & 1 \ 2 & 5 \end{pmatrix} = \begin{pmatrix} 15 & 5 \ 10 & 25 \end{pmatrix}\]

Similarly, multiplying matrix B by 3 results in:

\[3B = 3 \cdot \begin{pmatrix} -2 & 2 \ 1 & 4 \end{pmatrix} = \begin{pmatrix} -6 & 6 \ 3 & 12 \end{pmatrix}\]

When it comes to determinants, scalar multiplication affects the determinant in a particular way. For an nxn matrix A and a scalar c, the determinant becomes:\[det(cA) = c^n \cdot det(A)\]

In the provided step-by-step solutions, we see that for det(5A), the determinant is scaled by 5^2, since A is a 2x2 matrix. This concept helps in understanding how determinants behave under scalar transformations.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The plane \(2 x+3 y+6 z=6\) intersects the coordinate axes at points \(P, Q, R,\) forming a triangle. Find the vectors \(\overrightarrow{P Q}\) and \(\overrightarrow{P R}\). Write a vector formula for the area of the triangle \(P Q R,\) and find the area.

Find the symmetric equations and the parametric equations of a line, and/or the equation of the plane satisfying the following given conditions. Line through (5,-4,2) and parallel to the line \(\mathbf{r}=\mathbf{i}-\mathbf{j}+(5 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) t\).

The characteristic equation for a second-order matrix \(M\) is a quadratic equation. We have considered in detail the case in which M is a real symmetric matrix and the roots of the characteristic equation (eigenvalues) are real, positive, and unequal. Discuss some other possibilities as follows: (a) \(\quad \mathrm{M}\) real and symmetric, eigenvalues real, one positive and one negative. Show that the plane is reflected in one of the eigenvector lines (as well as stretched or shrunk). Consider as a simple special case $$M=\left(\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right)$$ (b) \(\quad \mathrm{M}\) real and symmetric, eigenvalues equal (and therefore real). Show that \(\mathrm{M}\) must be a multiple of the unit matrix. Thus show that the deformation consists of dilation or shrinkage in the radial direction (the same in all directions) with no rotation (and reflection in the origin if the root is negative). (c) \(\quad M\) real, not symmetric, eigenvalues real and not equal. Show that in this case the eigenvectors are not orthogonal. Hint: Find their dot product. (d) \(\quad \mathrm{M}\) real, not symmetric, eigenvalues complex. Show that all vectors are rotated, that is, there are no (real) eigenvectors which are unchanged in direction by the transformation. Consider the characteristic equation of a rotation matrix as a special case.

Find the angle between the given planes. $$2 x+y-2 z=3 \text { and } 3 x-6 y-2 z=4$$

As we did for the equilateral triangle, find the symmetry group of the square. Hints: Draw the square with its center at the origin and its sides parallel to the \(x\) and \(y\) axes. Find a set of eight 2 by 2 matrices (4 rotation and 4 reflection) which map the square onto itself, and write the multiplication table to show that you have a group.

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free