Chapter 15: Problem 5
The probability for a radioactive particle to decay between time \(t\) and time \(t+d t\) is proportional to \(e^{-\lambda t} .\) Find the density function \(f(t)\) and the cumulative distribution function \(F(t) .\) Find the expected lifetime (called the mean life) of the radioactive particle. Compare the mean life and the so-called "half life" which is defined as the value of \(t\) when \(e^{-\lambda t}=1 / 2\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.