Chapter 15: Problem 2
Show that the average value of a random variable \(n\) whose probability function is the Poisson distribution (9.8) is the number \(\mu\) in \((9.8) .\) Also show that the standard deviation of the random variable is \(\sqrt{\mu} .\) Hint. Write the infinite series for \(e^{x}\), differentiate it and multiply by \(x\) to get \(x e^{x}=\sum\left(n x^{n} / n !\right) ;\) put \(x=\mu .\) To find \(\sigma^{2}\) differentiate the \(x e^{x}\) series again, etc.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.