Chapter 15: Problem 11
Show that the expected number of heads in a single toss of a coin is \(\frac{1}{2}\). Show in two ways that the expected number of heads in two tosses of a coin is 1: (a) Let \(x=\) number of heads in two tosses and find \(\bar{x}\). (b) Let \(x=\) number of heads in toss 1 and \(y=\) number of heads in toss 2 ; find the average of \(x+y\) by Problem \(9 .\) Use this method to show that the expected number of heads in \(n\) tosses of a coin is \(\frac{1}{2} n\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.