Chapter 1: Problem 22
The series \(\sum_{n=1}^{\infty} 1 / n^{s}, s>1,\) is called the Riemann Zeta function, \(\zeta(s) .\) \((\text { a })\) you found \(\zeta(2)=\pi^{2} / 6 .\) When \(n\) is an even integer, these series can be summed exactly in terms of \(\pi .\) ) By computer or tables, find $$\text { (a) } \quad \zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}$$ $$\text { (b) } \quad \zeta(3)=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$$ $$\text { (c) } \quad \zeta\left(\frac{3}{2}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.