Chapter 8: Problem 16
Find the "general solution" of the equation \(y^{\prime}=\sqrt{y}\) by separation of variables. Find a particular solution satisfying \(y=0\) when \(x=0\). Show that the singular solution \(y=0\) cannot be obtained from the general solution. Sketch graphs of the "general solution" for several values of the arbitrary constant, and observe that each of them is tangent to the singular solution. Thus there are two solutions passing through any point on the \(x\) axis; in particular, there are two solutions satisfying \(x=y=0 .\) Problems 17 and 18 are physical problems leading to this differential equation.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.