Chapter 7: Problem 9
A periodic amplitude modulated (AM) radio signal has the form $$ y=(A+B \sin 2 \pi f t) \sin 2 \pi f_{c}\left(t-\frac{x}{v}\right) $$ The factor \(\sin 2 \pi f_{c}(t-x / v)\) is called the carrier wave; it has a very high frequency (called radio frequency; \(f_{\epsilon}\) is of the order of \(10^{6}\) cycles per second). The amplitude of the carrier wave is \((A+B \sin 2 \pi f t)\). This amplitude varies with time-hence the term "amplitude modulation"..-with the much smaller frequency of the sound being transmitted (called audio frequency; \(f\) is of the order of \(10^{2}\) cycles per second). In order to see the general appearance of such a wave, use the following simple but unrealistic data to sketch a graph of \(y\) as a function of \(t\) for \(x=0\) over one period of the amplitude function: \(A=3, B=1, f=1\), \(f_{c}=20 .\) Using trigonometric formulas, show that \(y\) can be written as a sum of three waves of frequencies \(f_{c}, f_{c}+f\), and \(f_{c}-f ;\) the first of these is the carrier wave and the other two are called side bands.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.