Chapter 27: Problem 12
On a certain (testing) steeplechase course there are 12 fences to be jumped and any horse that falls is not allowed to continue in the race. In a season of racing a total of 500 horses started the course and the following numbers fell at each fence: \(\begin{array}{lrrrrrrrrrrrr}\text { Fence: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \text { Falls: } & 62 & 75 & 49 & 29 & 33 & 25 & 30 & 17 & 19 & 11 & 15 & 12\end{array}\) Use this data to determine the overall probability of a horse falling at a fence, and test the hypothesis that it is the same for all horses and fences as follows. (a) draw up a table of the expected number of falls at each fence on the basis of the hypothesis; (b) consider for each fence \(i\) the standardised variable $$ z_{i}=\frac{\text { estimated falls }-\text { actual falls }}{\text { standard deviation of estimated falls }} $$ and use it in an appropriate \(\chi^{2}\) test; (c) show that the data indicates that the odds against all fences being equally testing are about 40 to \(1 .\) Identify the fences that are significantly easier or harder than the average.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.