Chapter 26: Problem 39
Show that, as the number of trials \(n\) becomes large but \(n p_{i}=\lambda_{i}, i=1,2, \ldots, k-1\) remains finite, the multinomial probability distribution (26.146), $$ M_{n}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{n !}{x_{1} ! x_{2} ! \cdots x_{k} !} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}} $$ can be approximated by a multiple Poisson distribution (with \(k-1\) factors) $$ M_{n}^{\prime}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)=\prod_{i=1}^{k-1} \frac{e^{-\lambda_{i}} \lambda_{i}^{x_{i}}}{x_{i} !} $$ (Write \(\sum_{i}^{k-1} p_{i}=\delta\) and express all terms involving subscript \(k\) in terms of \(n\) and \(\delta\), either exactly or approximately. You will need to use \(n ! \approx n^{f}[(n-\epsilon) !]\) and \((1-a / n)^{n} \approx e^{-a}\) for large \(\left.n_{1}\right)\) (a) Verify that the terms of \(M_{n}^{\prime}\) when summed over all values of \(x_{1}, x_{2}, \ldots, x_{k-1}\) add up to unity. (b) If \(k=7\) and \(\lambda_{i}=9\) for all \(i=1,2, \ldots, 6\), estimate, using the appropriate Gaussian approximation, the chance that at least three of \(x_{1}, x_{2}, \ldots, x_{6}\) will be 15 or greater.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.