Chapter 26: Problem 36
A discrete random variable \(X\) takes integer values \(n=0,1, \ldots, N\) with probabilities \(p_{n} .\) A second random variable \(Y\) is defined as \(Y=(X-\mu)^{2}\), where \(\mu\) is the expectation value of \(X\). Prove that the covariance of \(X\) and \(Y\) is given by $$ \operatorname{Cov}[X, Y]=\sum_{n=0}^{N} n^{3} p_{n}-3 \mu \sum_{n=0}^{N} n^{2} p_{n}+2 \mu^{3} $$ Now suppose that \(X\) takes all its possible values with equal probability and hence demonstrate that two random variables can be uncorrelated even though one is defined in terms of the other.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.