Chapter 26: Problem 13
A set of \(2 N+1\) rods consists of one of each integer length \(1,2, \ldots, 2 N, 2 N+1\) Three, of lengths \(a, b\) and \(c\), are selected, of which \(a\) is the longest. By considering the possible values of \(b\) and \(c\), determine the number of ways in which a nondegenerate triangle (i.e. one of non-zero area) can be formed (i) if \(a\) is even, and (ii) if \(a\) is odd. Combine these results appropriately to determine the total number of non-degenerate triangles that can be formed with the \(2 N+1\) rods, and hence show that the probability that such a triangle can be formed from a random selection (without replacement) of three rods is $$ \frac{(N-1)(4 N+1)}{2\left(4 N^{2}-1\right)} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.