Chapter 21: Problem 6
Use tensor methods to establish the following vector identities: (a) \((\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}\) (b) \(\operatorname{curl}(\phi \mathbf{u})=\phi \operatorname{curl} \mathbf{u}+(\operatorname{grad} \phi) \times \mathbf{u}\) (c) \(\operatorname{div}(\mathbf{u} \times \mathbf{v})=\mathbf{v} \cdot \operatorname{curl} \mathbf{u}-\mathbf{u} \cdot \operatorname{curl} \mathbf{v}\) (d) \(\operatorname{curl}(\mathbf{u} \times \mathbf{v})=(\mathbf{v} \cdot \mathbf{g r a d}) \mathbf{u}-(\mathbf{u} \cdot \mathbf{g r a d}) \mathbf{v}+\mathbf{u} \operatorname{div} \mathbf{v}-\mathbf{v} \operatorname{div} \mathbf{u}\) (e) \(\operatorname{grad} \frac{1}{2}(\mathbf{u} \cdot \mathbf{u})=\mathbf{u} \times \operatorname{curl} \mathbf{u}+(\mathbf{u} \cdot \operatorname{grad}) \mathbf{u}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.