Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Define \(J(m, n)\), for non-negative integers \(m\) and \(n\), by the integral $$ J(m, n)=\int_{0}^{\pi / 2} \cos ^{w} \theta \sin ^{n} \theta d \theta $$ (a) Evaluate \(J(0,0), J(0,1), J(1,0), J(1,1), J(m, 1), J(1, n)\) (b) Using integration by parts prove that, for \(m\) and \(n\) both \(>0\), $$ J(m, n)=\frac{m-1}{m+n} J(m-2, n) \quad \text { and } \quad J(m, n)=\frac{n-1}{m+n} J(m, n-2) $$ (c) Evaluate (i) \(J(5,3)\), (ii) \(J(6,5)\), (iii) \(J(4,8)\).

Short Answer

Expert verified
J(5,3) = \frac{1}{24}, J(6,5)=\frac{5}{693}, J(4,8)=\frac{1}{360}

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Understanding the Integral

The integral provided is \[\begin{equation} J(m, n) = \int_{0}^{\pi / 2} \cos ^{m} \theta \sin ^{n} \theta \, d \theta \end{equation}\]. We need to evaluate this integral for different values of m and n.
02

Evaluate J(0,0)

Substitute m=0 and n=0 into the integral: \[\begin{equation} J(0,0) = \int_{0}^{\pi / 2} \cos^{0} \theta \sin^{0} \theta \, d \theta = \int_{0}^{\pi / 2} d \theta \end{equation}\]. This integrates to \[\begin{equation} \theta \bigg|_{0}^{\pi / 2} = \frac{\pi}{2} \end{equation}\]. So, \[\begin{equation} J(0,0) = \frac{\pi}{2} \end{equation}\].
03

Evaluate J(0,1)

Substitute m=0 and n=1 into the integral: \[\begin{equation} J(0,1) = \int_{0}^{\pi / 2} \sin \theta \, d \theta \end{equation}\]. This integrates to \[\begin{equation} -\cos \theta \bigg|_{0}^{\pi / 2} = 1 \end{equation}\]. So, \[\begin{equation} J(0,1) = 1 \end{equation}\].
04

Evaluate J(1,0)

Substitute m=1 and n=0 into the integral: \[\begin{equation} J(1,0) = \int_{0}^{\pi / 2} \cos \theta \, d \theta \end{equation}\]. This integrates to \[\begin{equation} \sin \theta \bigg|_{0}^{\pi / 2} = 1 \end{equation}\]. So, \[\begin{equation} J(1,0) = 1 \end{equation}\].
05

Evaluate J(1,1)

Substitute m=1 and n=1 into the integral: \[\begin{equation} J(1,1) = \int_{0}^{\pi / 2} \cos \theta \sin \theta \, d \theta \end{equation}\]. Use substitution \[\begin{equation} u = \sin \theta, \, du = \cos \theta \, d\theta \end{equation}\]. The integral becomes \[\begin{equation} \int_{0}^{1} u \, du = \frac{u^2}{2} \bigg|_{0}^{1} = \frac{1}{2} \end{equation}\]. So, \[\begin{equation} J(1,1) = \frac{1}{2} \end{equation}\].
06

General formula for J(m, 1)

Substitute n=1 into the integral: \[\begin{equation} J(m, 1) = \int_{0}^{\pi / 2} \cos ^{m} \theta \sin \theta \, d \theta \end{equation}\]. Use substitution \[\begin{equation} u = \cos \theta, \, du = -\sin \theta \, d\theta \end{equation}\]. The integral becomes \[\begin{equation} -\int_{1}^{0} u^{m} (-du) = \int_{0}^{1} u^{m} \, du \end{equation}\], which is \[\begin{equation} \frac{u^{m+1}}{m+1} \bigg|_{0}^{1} = \frac{1}{m+1} \end{equation}\]. So, \[\begin{equation} J(m, 1) = \frac{1}{m+1} \end{equation}\].
07

General formula for J(1, n)

Substitute m=1 into the integral: \[\begin{equation} J(1, n) = \int_{0}^{\pi / 2} \cos \theta \sin^{n} \theta \, d \theta \end{equation}\]. Substitute \[\begin{equation} u = \sin \theta, \, du = \cos \theta \, d\theta \end{equation}\]. The integral becomes \[\begin{equation} \int_{0}^{1} u^{n} \, du = \frac{u^{n+1}}{n+1} \bigg|_{0}^{1} = \frac{1}{n+1} \end{equation}\]. So, \[\begin{equation} J(1, n) = \frac{1}{n+1} \end{equation}\].
08

Integration by Parts for J(m,n)

To prove \[\begin{equation} J(m, n) = \frac{m-1}{m+n} J(m-2, n) \end{equation}\], integration by parts is used. Let \[\begin{equation} u = \cos^{m-1} \theta, \, dv = \cos \theta \sin^n \theta \, d\theta \end{equation}\]. Then, \[\begin{equation} du = -(m-1) \cos^{m-2} \theta \sin \theta \, d\theta, \, v = \frac{\sin^{n+1} \theta}{n+1} \end{equation}\]. By parts: \[\begin{equation} \int_{0}^{\pi / 2} \cos^m \theta \sin^n \theta d\theta = \cos^{m-1} \theta \frac{\sin^{n+1} \theta}{n+1} \bigg|_{0}^{\pi/2} + (m-1) \int_{0}^{\pi / 2} \cos^{m-2} \theta \sin^{n+2} \theta \frac{d\theta}{n+1} = \frac{(m-1)}{m+n} J(m-2, n) \end{equation}\]. Similarly, \[\begin{equation} J(m, n) = \frac{n-1}{m+n} J(m, n-2) \end{equation}\].
09

Calculate J(5,3)

Using the formula \[\begin{equation} J(m, n) = \frac{m-1}{m+n} J(m-2, n) \end{equation}\]: \[\begin{equation} J(5,3) = \frac{4}{8} J(3, 3) = \frac{1}{2} \cdot \frac{2}{6} J(1, 3) = \frac{1}{6} \cdot \frac{1}{4} = \frac{1}{24} \end{equation}\].
10

Calculate J(6,5)

Using the formula \[\begin{equation} J(m, n) = \frac{m-1}{m+n} J(m-2, n) \end{equation}\]: \[\begin{equation} J(6,5) = \frac{5}{11} J(4, 5) = \frac{5}{11} \cdot \frac{3}{9} J(2, 5) = \frac{5}{11} \cdot \frac{1}{3} \cdot \frac{2}{7} J(0, 5) = \frac{5}{11} \cdot \frac{1}{3} \cdot \frac{2}{7} \cdot \frac{1}{6} = \frac{10}{1386} = \frac{5}{693} \end{equation}\].
11

Calculate J(4,8)

Using the formula \[\begin{equation} J(m, n) = \frac{m-1}{m+n} J(m-2, n) \end{equation}\]: \[\begin{equation} J(4,8) = \frac{3}{12} J(2, 8) = \frac{1}{4} \cdot \frac{1}{10} J(0, 8) = \frac{1}{4} \cdot \frac{1}{10} \cdot \frac{1}{9} = \frac{1}{360} \end{equation}\].

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Integral Calculus
Integral calculus is a subfield of calculus concerned with the concept of the integral. It plays a significant role in finding quantities such as areas, volumes, and many other values related to the accumulation of quantities. In this exercise, we are dealing with a specific type of integral involving trigonometric functions.
Trigonometric Integrals
Trigonometric integrals involve the integration of products of trigonometric functions. These integrals can often be simplified using various techniques such as substitutions and trigonometric identities. For example, the integral given in the exercise is \[J(m, n) = \int_{0}^{\pi / 2} \cos^{m} \theta \sin^{n} \theta \, d \theta\]. This type of integral can be solved by using substitution methods that make the integration process easier.
Integration by Parts
Integration by parts is a technique based on the product rule for differentiation. It's particularly useful when dealing with the product of two functions. The formula is given by \[\int u \, dv = uv - \int v \, du\]. In the given exercise, we can use this technique to derive a recursive formula for \ J(m, n)\. For instance, if we let \ u = \cos^{m-1}\theta\ and \ dv = \cos\theta \sin^{n}\theta d\theta, we can find a relation that connects integrals with different powers, helping us solve complex trigonometric integrals step by step.
Special Functions
Special functions are particular mathematical functions which have more specific definitions than general functions. In this exercise, the Beta function can be directly related to the given integrals. The Beta function, B(x, y), is defined as \[B(x, y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt\]. The integral in our problem has similar properties and can often be converted or directly related to these special functions, thus making it easier to compute.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free