Chapter 2: Problem 10
The function \(y(x)\) is defined by \(y(x)=\left(1+x^{m}\right)^{n}\). (a) Use the chain rule to show that the first derivative of \(y\) is \(n m x^{m-1}\left(1+x^{m}\right)^{n-1}\). (b) The binomial expansion (see section \(1.5\) ) of \((1+z)^{n}\) is $$ (1+z)^{n}=1+n z+\frac{n(n-1)}{2 !} z^{2}+\cdots+\frac{n(n-1) \cdots(n-r+1)}{r !} z^{r}+\cdots $$ Keeping only the terms of zeroth and first order in \(d x\), apply this result twice to derive result (a) from first principles. (c) Expand \(y\) in a series of powers of \(x\) before differentiating term by term. Show that the result is the series obtained by expanding the answer given for \(d y / d x\) in (a).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.