In the quantum mechanical study of the scattering of a particle by a
potential, a Born-approximation solution can be obtained in terms of a
function \(y(\mathbf{r})\) that satisfies an equation of the form
$$
\left(-\nabla^{2}-K^{2}\right) y(\mathbf{r})=F(\mathbf{r})
$$
Assuming that \(y_{\mathbf{k}}(\mathbf{r})=(2 \pi)^{-3 / 2} \exp (i \mathbf{k}
\cdot \mathbf{r})\) is a suitably normalised eigenfunction of \(-\nabla^{2}\)
corresponding to eigenvalue \(-k^{2}\), find a suitable Green's function
\(G_{K}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\) By taking the direction of
the vector \(\mathbf{r}-\mathbf{r}^{\prime}\) as the polar axis for a
\(\mathbf{k}\)-space integration, show that \(G_{K}\left(\mathbf{r},
\mathbf{r}^{\prime}\right)\) can be reduced to
$$
\frac{1}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\int_{-\infty}^{\infty} \frac{w \sin w}{w^{2}-w_{0}^{2}} d w
$$
where \(w_{0}=K\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\).
(This integral can be evaluated using a contour integration (chapter 20 ) to
give \(\left.\left(4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)^{-1}
\exp \left(i K\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) .\right)\)