Chapter 18: Problem 25
Consider an oscillator at \(r=r_{0}\) emitting a pulse of light (null geodesic) at \(t=t_{0}\). If this is received by an observer at \(r=r_{1}\) at \(t=t_{1}\), show that $$ t_{1}=t_{0}+\int_{r_{0}}^{r_{1}} \frac{d r}{c(I-2 m / r)} $$ By considering a signal emitted at \(t_{0}+\Delta t_{0}\), received at \(t_{1}+\Delta t_{1}\) (assuming the radial positions \(r_{0}\) and \(r_{1}\) to be constant), shou that \(t_{0}=t_{1}\) and the gravitational redsbift found by comparing proper times at cmission and reception is given by $$ 1+z=\frac{\Delta t_{1}}{\Delta \tau_{0}}=\sqrt{\frac{1-2 m / r_{1}}{1-2 m / r_{0}}} $$ Show that for two clocks at different heights \(h\) on the Earth's surface, this reduces to $$ z \approx \frac{2 G M}{c^{2}} \frac{h}{R} $$ where \(M\) and \(R\) are the mass and radius of the Earth.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.