Chapter 18: Problem 22
(a) For a perfect flud in general relat?uty, $$ T_{\mu v}=\left(\rho c^{2}+P\right) U_{\mu} U_{v}+P g_{\beta v} \quad\left(U^{\mu} U_{y}=-1\right) $$ show that the conservation identities \(T^{\mu v}, v=0\) imply \(\rho_{v} U^{v}+\left(\rho c^{2}+P\right) U_{v^{2}}^{*}\) \(\left(\rho c^{2}+P\right) U_{,}^{\mu} U^{v}+P_{v}\left(g^{\mu \prime}+U^{\mu} U^{\nu}\right)\) (c) In the Newtonian approximatuon where $$ U_{\mu}=\left(\frac{1}{c},-1\right)+O\left(\beta^{2}\right), \quad P=O\left(\beta^{2}\right) \rho c^{2}, \quad\left(\beta=\frac{v}{c}\right) $$ where \(|\beta| \ll 1\) and \(g_{\mu \nu}=\eta_{h^{x}}+\epsilon h_{\mu \nu}\) with \(\epsilon \ll 1\), show that $$ h_{+\mu} \approx-\frac{2 \phi}{c^{2}}, \quad h_{i j} \approx-\frac{2 \phi}{c^{2}} \delta_{j} \quad \text { where } \quad \nabla^{2} \phi=4 \pi G \rho $$ and \(h_{t 4}=O(\beta) h_{44}\) Show in this approxumation that the equations \(T^{\mu t},=0\) approvimate to $$ \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho v)=0, \quad \rho \frac{d v}{d t}=-\nabla P-\rho \nabla \phi $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.