Chapter 18: Problem 18
Let \((M, \varphi)\) be a surface of revolution defined as a submantfold of \(\mathbb{E}^{3}\) of the form $$ r=g(u) \cos \theta, \quad y=g(u) \sin \theta, \quad z=h(u) $$ Show that the induced metric (see Example 18.1) is $$ \mathrm{d} s^{2}=\left(g^{\prime}(u)^{2}+h^{\prime}(u)^{2}\right) \mathrm{d} u^{2}+g^{2}(u) \mathrm{d} \theta^{2} $$ Picking the parameter \(u\) such that \(g^{\prime}(u)^{2}+h^{\prime}(u)^{2}=1\) (interpret this choice!), and setting the basis 1-forms to be \(\varepsilon^{\prime}=\mathrm{d} u, \varepsilon^{2}=g d \theta\), calculate the connection I-forms \(\omega^{\prime}\), the curvature 1 -forms \(\rho_{\prime}^{\prime}\), and the curvature tensor component \(R_{1212}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.