Chapter 16: Problem 4
Let \(\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) be the map $$ (x, y) \rightarrow(u, v, w) \text { where } u=\sin (r v), r=x+y, w=2 $$ For the 1 -form \(\omega=w_{1} \mathrm{~d} u+w_{2} \mathrm{~d} v+w_{3} \mathrm{dw}\) on \(\Omega^{3}\) evaluate \(\varphi^{\circ} \omega\). For any function \(f: \mathbb{R}^{3} \rightarrow \mathbb{R}\) verify Theorem 16.2, that \(\mathrm{d}\left(\varphi^{*} f\right)=\varphi^{*} \mathrm{~d} f\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.