Chapter 16: Problem 1
Let \(x^{1}=x, x^{2}=y, x^{3}=z\) be coorduates on the manifold \(\mathbb{R}^{3}\). Write out the components \(\alpha_{u}\) and \((\mathrm{d} \alpha)_{n k}\), etc. for each of the following 2 -forms: $$ \begin{aligned} &\alpha=\mathrm{d} y \wedge \mathrm{d} z+\mathrm{d} x \wedge \mathrm{d} y \\ &\beta=x \mathrm{~d} z \wedge \mathrm{d} y+y \mathrm{~d} x \wedge \mathrm{d} z+z \mathrm{\phi} y \wedge \mathrm{d} x \\ &\gamma=\mathrm{d}\left(r^{2}(x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z)\right) \text { where } r^{2}=x^{2}+y^{2}+z^{2}. \end{aligned} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.