Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

Let \(x^{1}=x, x^{2}=y, x^{3}=z\) be coorduates on the manifold \(\mathbb{R}^{3}\). Write out the components \(\alpha_{u}\) and \((\mathrm{d} \alpha)_{n k}\), etc. for each of the following 2 -forms: $$ \begin{aligned} &\alpha=\mathrm{d} y \wedge \mathrm{d} z+\mathrm{d} x \wedge \mathrm{d} y \\ &\beta=x \mathrm{~d} z \wedge \mathrm{d} y+y \mathrm{~d} x \wedge \mathrm{d} z+z \mathrm{\phi} y \wedge \mathrm{d} x \\ &\gamma=\mathrm{d}\left(r^{2}(x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z)\right) \text { where } r^{2}=x^{2}+y^{2}+z^{2}. \end{aligned} $$

Problem 1

For a reversible process \(\sigma: T \rightarrow K\), using absolute temperature \(T\) as the parameter, set $$ \sigma^{*} \theta=c \mathrm{~d} T $$ where \(c\) is known as the specife heat for the process. For a perfect gas show that for a process at constant volume, \(V=\) const., the specific heat is given by $$ c_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} $$ For a process at constant pressure show that $$ c_{p}=c_{V}+R $$ while for an adiabatic process, \(\sigma^{\circ} \theta=0\). $$ p V^{r}=\text { const. where } \gamma=\frac{c_{p}}{c_{V}}. $$

Problem 2

On the manifold \(\mathbb{R}^{n}\) compute the exteror derivative \(\mathrm{d}\) of the differential form $$ \alpha=\sum_{t=1}^{n}(-1)^{i-1} x^{i} \mathrm{~d} x^{\prime} \wedge \cdots \wedge d x^{l-1} \wedge d x^{\prime+1} \wedge \cdots \wedge d x^{n}. $$ Do the same for \(\beta=r^{-n} \alpha\) where \(r^{2}=\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}\).

Problem 4

Let \(\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) be the map $$ (x, y) \rightarrow(u, v, w) \text { where } u=\sin (r v), r=x+y, w=2 $$ For the 1 -form \(\omega=w_{1} \mathrm{~d} u+w_{2} \mathrm{~d} v+w_{3} \mathrm{dw}\) on \(\Omega^{3}\) evaluate \(\varphi^{\circ} \omega\). For any function \(f: \mathbb{R}^{3} \rightarrow \mathbb{R}\) verify Theorem 16.2, that \(\mathrm{d}\left(\varphi^{*} f\right)=\varphi^{*} \mathrm{~d} f\).

Problem 5

If \(\alpha\) is an \(r\)-form on a differentiable manifold \(M\), show that for any vector fields \(X_{1}, X_{2}, \ldots X_{r+1}\) $$ \begin{aligned} &d \alpha\left(X_{1}, X_{2} \ldots . X_{r+1}\right)=\frac{1}{r+1}\left[\sum_{t=1}^{r+1}(-1)^{+1} X_{t} \alpha\left(X_{1}, X_{2} \ldots, \hat{X}_{1}, \ldots, X_{r+1}\right)\right.\\\ &\left.+\sum_{i=1}^{\prime} \sum_{j=1=1}^{r+1}(-1)^{\gamma+1} \alpha\left(\left[X_{1}, X_{1}\right] \ldots . \hat{X}_{1}, \ldots . \hat{X}_{j}, \ldots, X_{r+1}\right)\right] \end{aligned} $$ where \(\hat{X}_{i}\) signifies that the argument \(X_{1}\) is to be omitted. The case \(r=0\) simply asserts that \(\mathrm{d} f(X)=\) \(X f\), while Eq. \((16.14)\) is the case \(r=1\). Proceed by induction, assuming the identity is true for all \((r-1)\)-forms, and use the fact that any \(r\)-form can be written locally as a sum of tensors of the type \(\omega \wedge \beta\) where \(\omega\) is a 1 -form and \(\beta\) an \(r\)-form.

Problem 7

Let \(\omega=y z \mathrm{~d} x+x z+z^{2} \mathrm{~d} z\). Show that the Pfaffian system \(\omega=0\) has integral surfaces \(g=z^{3} \mathrm{e}^{x y}=\) const, and express \(\omega\) in the form \(f \mathrm{~d} g\)

Problem 8

Given an \(r \times r\) matrix of 1 -forms \(\Omega\), show that the equation $$ d A=\Omega A-A \Omega $$ 15 soluble for an \(r \times r\) matrix of functions \(A\) only if $$ \Theta A=A \Theta $$ where \(\Theta=d \Omega-\Omega \wedge \Omega\) 1f the equation has a solution for arbitrary initial values \(A=A_{0}\) at any pornt \(p \in M\), show that there exists a 2 -form \(\alpha\) such that \(\Theta=\alpha\\}\) and \(d \alpha=0\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Combined Science Textbooks