Chapter 13: Problem 7
In the Hulbert space \(L^{2}([-1,1])\) let \(\left.\mid f_{n}(x)\right\\}\) be the sequence of functions \(1, x, x^{2}, \ldots, f_{n}(x)=x^{n} \ldots .\) (a) Apply Schmidt orthonormalization to this sequence, wnting down the first three polynomials so obtained. (b) The \(n\)th Legendre polynomial \(P_{n}(x)\) is defined as $$ P_{n}(x)=\frac{1}{2^{n} n !} \frac{d^{n}}{\mathrm{dx}^{n}}\left(x^{2}-1\right)^{n} $$ Prove that $$ \int_{-1}^{1} P_{m}(\mathrm{r}) P_{n}(\mathrm{x}) \mathrm{d} \mathrm{x}=\frac{2}{2 n+1} \delta_{m \mathrm{~m}} $$ (c) Show that the \(n\)th member of the o.n. sequence obtained in (a) is \(\sqrt{n+\frac{1}{2}} P_{n}(x)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.