Chapter 13: Problem 28
For any pair of hermitian operators \(A\) and \(B\) on a Hilbert space \(\mathcal{H}\), define \(A \leq B\) iff \((u \mid A u) \leq(u \mid B u)\) for all \(u \in \mathcal{H}\). Show that this is a partial order on the set of hermatian operators pay particular attention to the symmetry property, \(A \leq B\) and \(B \leq A\) umplies \(A=B\). (a) For multiplication operators on \(L^{2}(X)\) show that \(A_{0} \leq A_{B}\). Iff \(\alpha(x) \leq \beta(x)\) a.e. on \(X\). (b) For projection operators show that the definition given here reduces to that given in the text, \(P_{N} \leq P_{N}\) iff \(M \subseteq N\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.