Chapter 13: Problem 2
On the vector space \(\mathcal{F}^{\prime}[a, b]\) of complex continuous differentiable functions on the, interval \([a, b]\), set $$ \langle f| g)=\int_{a}^{b} \overline{f^{\prime}(x)} g^{\prime}(x) \mathrm{dr} \text { where } f^{\prime}=\frac{\mathrm{d} f}{\mathrm{~d} x}, \quad g^{\prime}=\frac{\mathrm{d} g}{\mathrm{~d} x} $$ Show that this is not an inner product, but becomes one if restricted to the space of functions \(f \in\) \(F^{\prime}[a, b]\) having \(f(c)=0\) for seme fixed \(a \leq c \leq b\). Is it a Hilbert space? Give a similar analysis for the case \(a=-\infty, b=\infty\), and restricting functions to those of compact support.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.