Chapter 13: Problem 16
For bounded linear operators \(A, B\) on a normed vector space \(V\) show that $$ \|\lambda A\|=|\lambda|\|A\|, \quad|A+B\|\leq\| A|+\|B\|, \quad \mid A B\|\leq\| A\|\| B \| $$ Hence show that \(|A|\) is a genuine norm on the set of bounded hnear operators on \(V\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.