Chapter 10: Problem 22
If \(G_{0}\) is the component of the identity of a locally connected topological group \(G\), the factor group \(G / G_{0}\) is called the group of components of \(G .\) Show that the group of components is a discrete topological group with respect to the topology induced by the natural projection map \(\pi: g \mapsto g G_{0}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.