Chapter 9: Problem 32
For spherical coordinates, $$ \begin{aligned} x &=\rho \sin \theta \cos \phi \\ y &=\rho \sin \theta \sin \phi \\ z &=\rho \cos \theta \end{aligned} $$ find the scale factors and derive the following expressions: $$ \begin{gathered} \nabla f=\frac{\partial f}{\partial \rho} \hat{\mathbf{e}}_{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{1}{\rho \sin \theta} \frac{\partial f}{\partial \phi} \hat{\mathbf{e}}_{\phi} \\ \nabla \cdot \mathbf{F}=\frac{1}{\rho^{2}} \frac{\partial\left(\rho^{2} F_{\rho}\right)}{\partial \rho}+\frac{1}{\rho \sin \theta} \frac{\partial\left(\sin \theta F_{\theta}\right)}{\partial \theta}+\frac{1}{\rho \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}. \end{gathered} $$ $$ \begin{aligned} \nabla \times \mathbf{F}=& \frac{1}{\rho \sin \theta}\left(\frac{\partial\left(\sin \theta F_{\phi}\right)}{\partial \theta}-\frac{\partial F_{\theta}}{\partial \phi}\right) \hat{\mathbf{e}}_{\rho}+\frac{1}{\rho}\left(\frac{1}{\sin \theta} \frac{\partial F_{\rho}}{\partial \phi}-\frac{\partial\left(\rho F_{\phi}\right)}{\partial \rho}\right) \\ &+\frac{1}{\rho}\left(\frac{\partial\left(\rho F_{\theta}\right)}{\partial \rho}-\frac{\partial F_{\rho}}{\partial \theta}\right) \hat{\mathbf{e}}_{\phi} \end{aligned} $$ $$ \nabla^{2} f=\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{\rho^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}. $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.