Chapter 9: Problem 31
For cylindrical coordinates, $$ \begin{aligned} x &=r \cos \theta \\ y &=r \sin \theta \\ z &=z \end{aligned} $$ find the scale factors and derive the following expressions: $$ \begin{gathered} \nabla f=\frac{\partial f}{\partial r} \hat{\mathbf{e}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{\partial f}{\partial z} \hat{\mathbf{e}}_{z} \\ \nabla \cdot \mathbf{F}=\frac{1}{r} \frac{\partial\left(r F_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}+\frac{\partial F_{z}}{\partial z} \\ \nabla \times \mathbf{F}=\left(\frac{1}{r} \frac{\partial F_{z}}{\partial \theta}-\frac{\partial F_{\theta}}{\partial z}\right) \hat{\mathbf{e}}_{r}+\left(\frac{\partial F_{r}}{\partial z}-\frac{\partial F_{z}}{\partial r}\right) \hat{\mathbf{e}}_{\theta}+\frac{1}{r}\left(\frac{\partial\left(r F_{\theta}\right)}{\partial r}-\frac{\partial F_{r}}{\partial \theta}\right) \\\ \nabla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}. \end{gathered} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.