For cylindrical coordinates,
$$
\begin{aligned}
x &=r \cos \theta \\
y &=r \sin \theta \\
z &=z
\end{aligned}
$$
find the scale factors and derive the following expressions:
$$
\begin{gathered}
\nabla f=\frac{\partial f}{\partial r} \hat{\mathbf{e}}_{r}+\frac{1}{r}
\frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{\partial
f}{\partial z} \hat{\mathbf{e}}_{z} \\
\nabla \cdot \mathbf{F}=\frac{1}{r} \frac{\partial\left(r
F_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial F_{\theta}}{\partial
\theta}+\frac{\partial F_{z}}{\partial z} \\
\nabla \times \mathbf{F}=\left(\frac{1}{r} \frac{\partial F_{z}}{\partial
\theta}-\frac{\partial F_{\theta}}{\partial z}\right)
\hat{\mathbf{e}}_{r}+\left(\frac{\partial F_{r}}{\partial z}-\frac{\partial
F_{z}}{\partial r}\right)
\hat{\mathbf{e}}_{\theta}+\frac{1}{r}\left(\frac{\partial\left(r
F_{\theta}\right)}{\partial r}-\frac{\partial F_{r}}{\partial \theta}\right)
\\\
\nabla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial
f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial
\theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}.
\end{gathered}
$$