Chapter 7: Problem 14
Consider the function \(u(x, y)=x^{3}-3 x y^{2}\). a. Show that \(u(x, y)\) is harmonic; that is, \(\nabla^{2} u=0\) b. Find its harmonic conjugate, \(v(x, y)\). c. Find a differentiable function, \(f(z)\), for which \(u(x, y)\) is the real part. d. Determine \(f^{\prime}(z)\) for the function in part c. [Use \(f^{\prime}(z)=\frac{\partial_{2}}{\partial x}+i \frac{\partial v}{\partial x}\) and rewrite your answer as a function of \(z .]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.