Chapter 3: Problem 14
Consider the following systems. For each system, determine the coefficient matrix. When possible, solve the eigenvalue problem for each matrix and use the eigenvalues and eigenvectors to provide solutions to the given systems. Finally, in the common cases that you investigated in Problem 2.31, make comparisons with your previous answers, such as what type of eigenvalues correspond to stable nodes. a. $$ \begin{aligned} &x^{\prime}=3 x-y \\ &y^{\prime}=2 x-2 y \end{aligned} $$ b. $$ \begin{aligned} &x^{\prime}=-y_{t} \\ &y^{\prime}=-5 x \end{aligned} $$ c. $$ \begin{aligned} &x^{\prime}=x-y_{r} \\ &y^{\prime}=y \end{aligned} $$ d. $$ \begin{aligned} &x^{\prime}=2 x+3 y \\ &y^{\prime}=-3 x+2 y \end{aligned} $$ e. $$ \begin{aligned} x^{\prime} &=-4 x-y \\ y^{\prime} &=x-2 y \end{aligned} $$ \(\mathrm{f}\). $$ \begin{aligned} x^{\prime} &=x-y \\ y^{\prime} &=x+y \end{aligned} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.