Chapter 11: Problem 4
Do the following: a. Compute: \(\lim _{n \rightarrow \infty} n \ln \left(1-\frac{3}{n}\right)\). b. Use L'Hopital's Rule to evaluate \(L=\lim _{x \rightarrow \infty}\left(1-\frac{4}{x}\right)^{x}\). [Hint: Consider \(\ln L\).] c. Determine the convergence of \(\sum_{n=1}^{\infty}\left(\frac{n}{3 n+2}\right)^{n^{2}}\). d. Sum the series \(\sum_{n=1}^{\infty}\left[\tan ^{-1} n-\tan ^{-1}(n+1)\right]\) by first writing the \(N\) th partial sum and then computing \(\lim _{N \rightarrow \infty} s_{N}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.