Chapter 11: Problem 3
Determine if the following converge, or diverge, using one of the convergence tests. If the series converges, is it absolute or conditional? a. \(\sum_{n=1}^{\infty} \frac{n+4}{2 n^{3}+1} .\) b. \(\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}\) c. \(\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}\). d. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{n-1}{2 n^{2}-3} .\) e. \(\sum_{n=1}^{\infty} \frac{\ln n}{n}\) f. \(\sum_{n=1}^{\infty} \frac{100^{n}}{n^{200}} .\) g. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+3}\). h. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{5 n}}{n+1}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.